سنسور چیست؟

سنسور المان حس کننده ای است که کمیتهای فیزیکی مانند فشار، حرارت، رطوبت، دما، و ... را به کمیتهای الکتریکی پیوسته (آنالوگ) یا غیرپیوسته (دیجیتال) تبدیل می کند. این سنسورها در انواع دستگاههای اندازه گیری، سیستمهای کنترل آنالوگ و دیجیتال مانند PLC مورد استفاده قرار می گیرند. عملکرد سنسورها و قابلیت اتصال آنها به دستگاههای مختلف از جمله PLC باعث شده است که سنسور بخشی از اجزای جدا نشدنی دستگاه کنترل اتوماتیک باشد. سنسورها اطلاعات مختلف از وضعیت اجزای متحرک سیستم را به واحد کنترل ارسال نموده و باعث تغییر وضعیت عملکرد دستگاهها می شوند.
سنسورهای بدون تماس
سنسورهای بدون تماس سنسورهائی هستند که با نزدیک شدن یک قطعه وجود آنرا حس کرده و فعال می شوند. این عمل می تواند باعث جذب یک رله، کنتاکتور و یا ارسال سیگنال الکتریکی به طبقه ورودی یک سیستم گردد.
کاربرد سنسورها
1- شمارش تولید: سنسورهای القائی، خازنی و نوری
2- کنترل حرکت پارچه و ...: سنسور نوری و خازنی
3- کنترل سطح مخازن: سنسور نوری و خازنی و خازنی کنترل سطح
4- تشخیص پارگی ورق: سنسور نوری
5- کنترل انحراف پارچه: سنسور نوری و خازنی
6- کنترل تردد: سنسور نوری
7- اندازه گیری سرعت: سنسور القائی و خازنی
8- اندازه گیری فاصله قطعه: سنسور القائی آنالوگ
مزایای سنسورهای بدون تماس
سرعت سوئیچینگ زیاد: سنسورها در مقایسه با کلیدهای مکانیکی از سرعت سوئیچینگ بالائی برخوردارند، بطوریکه برخی از آنها (سنسور القائی سرعت) با سرعت سوئیچینگ تا 25KHz کار می کنند.
طول عمر زیاد: بدلیل نداشتن کنتاکت مکانیکی و عدم نفوذ آب، روغن، گرد و غبار و ... دارای طول عمر زیادی هستند.
عدم نیاز به نیرو و فشار: با توجه به عملکرد سنسور هنگام نزدیک شدن قطعه، به نیرو و فشار نیازی نیست.
قابل استفاده در محیطهای مختلف با شرایط سخت کاری: سنسورها در محیطهای با فشار زیاد، دمای بالا، اسیدی، روغنی، آب و ... قابل استفاده می باشند.
عدم ایجاد نویز در هنگام سوئیچینگ: به دلیل استفاده از نیمه هادی ها در طبقه خروجی، نویزهای مزاحم Bouncing) (Noiseایجاد نمی شود.
سنسورهای القائی
سنسورهای القائی سنسورهای بدون تماس هستند که تنها در مقابل فلزات عکس العمل نشان می دهند و می توانند فرمان مستقیم به رله ها، شیرهای برقی، سیستمهای اندازه گیری و مدارات کنترل الکتریکی *مانند: PLC *ارسال نمایند.
اساس کار و ساختمان سنسورهای القائی
ساختمان این سنسورها از چهار طبقه تشکیل می شود: اسیلاتور، دمدولاتور، اشمیت تریگر، تقویت خروجی. قسمت اساسی این سنسورها از یک اسیلاتور با فرکانس بالا تشکیل یافته که می تواند توسط قطعات فلزی تحت تاثیر قرار گیرد. این اسیلاتور باعث بوجود آمدن میدان الکترومغناطیسی در قسمت حساس سنسور می شود. نزدیک شدن یک قطعه فلزی باعث بوجود آمدن جریانهای گردابی در قطعه گردیده و این عمل سبب جذب انرژی میدان می شود و در نتیجه دامنه اسیلاتور کاهش می یابد. از آنجا که طبقه دمدلاتور، آشکارساز دامنه اسیلاتور است در نتیجه کاهش دامنه اسیلاتور توسط این قسمت به طبقه اشمیت تریگر منتقل می شود. کاهش دامنه اسیلاتور باعث فعال شدن خروجی اشمیت تریگر گردیده و این قسمت نیز به نوبه خود باعث تحریک طبقه خروجی می شود.
قطعه استاندارد: یک قطعه مربعی شکل از فولاد ST37 است که از آن بمنظور تست فاصله سوئیچینگ استفاده می شود. استاندارد IEC947-5-2 ضخامت قطعه 1mm و طول ضلع این مربع در اندازه های زیر می تواند انتخاب شود:
- به اندازه قطر سنسور
- سه برابر فاصله سوئیچینگ نامی سنسور 3*Sn
ضرایب تصحیح: فاصله سوئیچینگ با کوچکتر شدن ابعاد قطعه استاندارد و یا با بکارگیری فلز دیگری غیر از فولاد ST37 تغییر خواهد کرد. در جدول زیر ضرایب تصحیح برای فلزات مختلف نشان داده شده است.
ضریب تصحیح (KM) برای فولاد ST37 برابر 1.0
ضریب تصحیح (KM) برای نیکل برابر 0.9
ضریب تصحیح (KM) برای برنج برابر 0.5
ضریب تصحیح (KM) برای مس برابر 0.45
ضریب تصحیح (KM) برای آلومینیوم برابر 0.4
بعنوان مثال هرگاه یک سنسور در مقابل فولاد از فاصله 10mm عمل سوئیچینگ را انجام دهد، همان سنسور در مقابل مس از فاصله 4.5mm عمل خواهد کرد.
فرکانس سوئیچینگ: حداکثر تعداد قطع و وصل یک سنسور در یک ثانیه می باشد. بر حسب Hz این پارامتر طبق استاندارد DIN EN 50010 با شرایط زیر اندازه گرفته می شود:
فاصله سوئیچینگ S(Switching Distance): فاصله بین قطعه استاندارد و سطح حساس سنسور به هنگام عمل سوئیچینگ می باشد.**استاندارد EN 50010**
فاصله سوئیچینگ نامی Sn(Nominal Switching Distance): فاصله ای است که در حالت متعارف و بدون در نظر گرفتن پارامترهای متغیر از قبیل حرارت، ولتاژ تغذیه و غیره تعریف شده است.
فاصله سوئیچینگ موثر Sr (Effective Switching Distance): فاصله سوئیچینگ تحت شرایط ولتاژ نامی و حرارت 20 درجه سلسیوس می باشد. در این حالت تلرانسها و پارامترهای متغیر نیز در نظر گرفته شده اند. 0.9Sn
فاصله سوئیچینگ مفید Su (Useful Switching Distance): فاصله ای است که در محدوده حرارت و ولتاژ مجاز، عمل سوئیچینگ انجام می شود. 0.81Sn
فاصله سوئیچینگ عملیاتی Sa (Operating Switching Distance): فاصله ای است که تحت شرایط مجاز، عملکرد سنسور تضمین شده است. 0
هیسترزیس H: فاصله بین نقطه وصل شدن (هنگام نزدیک شدن قطعه به سنسور) و نقطه قطع شدن (هنگام دورشدن قطعه از سنسور) می باشد. حداکثر این مقدار 10% مقدار نامی می باشد. **استاندارد EN 60947-5-2**
قابلیت تکرارR (Repeatability): قابلیت تکرار فاصله سوئیچینگ مفید تحت ولتاژ تغذیه V و در شرایط زیر اندازه گیری می شود: حرارت محیط: 23 درجه سلسیوس؛ رطوبت محیط: 50 الی 70 درصد؛ زمان تست: 8 ساعت. (مقدار تلرانس برای این پارامتر طبق استاندارد EN 60947-5-2 حداکثر +-0.1Sr می باشد.(
پایداری حرارتی (Temperature Drift): تغییرات فاصله موثر سوئیچینگ در اثر تغییرات دما طبق استاندارد EN 60947-5-2 و در محدوده دمای 20 درجه سلسیوس زیر صفر تا 60 درجه سلسیوس بالای صفر حداکثر 10% است.
حرارت محیطTa (Ambient Temperature): محدوده حرارتی است که در آن محدوده، عملکرد سنسور تضمین شده است.
کلاس حفاظتی: IP67 (DIN 40050).
نحوه نصب سنسورهای القائی: هرگاه دو یا چند سنسور القائی در مجاورت هم و یا در مقابل هم نصب شوند، شرایط زیر باید رعایت شود:
الف) نحوه نصب سنسورهای القائی Flush: سنسورهای Flush (Shielded) سنسورهائی هستند که قسمت حساس سنسور توسط پوسته فلزی محصور شده است.

تاثير ميدانهاي الكترومغناطيسي بر انسان :

امروزه مصرف انرژي در صنعت برق رو به افزايش است و اثرات مخربي بر روي سلامتي و ايمني انسان داشته است. تاثيرات ميدانهاي الكتريكي و مغناطيسي بر روي سلامت و بهداشت انسان از مضرات اين صنعت مي‌باشد. ما در زندگي روزمره در محيط كار و خانه و مدرسه در معرض ميدان الكتريكي و مغناطيسي هستيم. ميدانهاي مغناطيسي و الكتريكي به وسيله خطوط نيرو، سيمهاي الكتريكي و تجهيزات الكتريكي توليد مي شود و خطوط نامرئي نيرو هستند كه در اطراف هر وسيله وجود دارند و قدرت آن با افزايش ولتاژ افزايش مي‌يابد. ميدان الكترومغناطيسي از وسايل برقي مثل كامپيوتر شخصي، فر برقي، تلويزيون، يخچال و غيره و نيز خطوط انتقال نيروي برق با ولتاژ زياد حاصل مي شود. ميدان الكترومغناطيسي بر روي سيستمهاي عصبي و رشد و تكامل و ترميم سلولها اختلالاتي ايجاد مي‌كند و موجب پيدايش امراض ناشناخته مانند انواع سرطانها، طومورهاي مغزي و ناباروري در انسان مي‌شود همچنين افرادي كه به دفعات و به مدت طولاني در معرض چنين ميدانهايي قرار مي‌گيرند و نيز افراد شاغل در صنايع برق و تلفن، تعميركاران تلويزيون و جوشكاران آسيب پذيرتر مي‌باشندپس بايد با نصب دستگاههاي كنترل سرطانزايي در محيط كار و شناسايي منابع توليد الكترومغناطيسي، رعايت نكات ايمني در محيط كار و در صورت امكان استفاده از تجهيزاتي كه داراي حداقل ميزان انتشار امواج الكترومغناطيسي است محيطي مناسب براي كار و فعاليت ايجاد نماييم.
● مقدمه
امروزه توليد سرانه برق و روند رو به رشد آن يكي از شاخصهاي مهم نشان دهنده پيشرفت صنعتي، اقتصادي و افزايش رفاه كشور مي‌باشد.
با توجه به اهميت طرحهاي صنعتي در توسعه پايدار، صنعت برق نيز مشابه ديگر صنايع با توجه به افزايش شتاب توليد و مصرف انرژي برق در ۲۰ سال گذشته نقش به سزايي در آلودگي محيط زيست و سلامت و بهداشت انسان داشته است و بايستي اثرات نيروگاههاي حرارتي از نظر آلودگي آبي و گازي، جامد و آلودگيهاي صوتي و ميدانهاي الكتريكي و مغناطيسي ناشي از فعاليت نيروگاهها بر روي موجودات زنده به خصوص انسان مورد بررسي قرارگيرد.
درون تمام ارگانيزمهاي زنده، جريان الكتريكي و ميدانهاي الكتريكي با منشا داخلي وجود دارد كه در مكانيسمهاي پيچيده كنترل فيزيولوژيكي نظير اختلال در سيستمهاي عصبي، عضلاني، فعاليت ممبران سلولي و رشد وتكامل و ترميم بافتها نقش دارند. لذا لازم است ويژگيهاي مصنوعي آثار احتمالي آنها در سيستمهاي بيولوژيكي مورد بررسي قرار گيرند. ميدانهاي الكترومغناطيسي (EMF) ابتدا موجب سرگيجه، وزوز گوش، ضعف و خستگي و تار شدن ديد چشم و خواب آلودگي هنگام كار و همچنين پيدايش امراض ناشناخته، تغيير تركيبات خون، اختلال در سيستمهاي عصبي عضلاني، (نوروماسكولار)، دگرگوني ژنتيكي، بروز سرطانهايي چون لنفوم، لوسمي، طومورهاي مغزي، سرطان غدد بزاقي و اختلال در باروري در زنان و مردان مي‌شود.
ما در زندگي روزمره در محيط كار و خانه و مدرسه در معرض ميدان الكترومغناطيسي و الكتريكي هستيم و اين ميدان الكتريكي حاصل از توليد، انتقال و استفاده از الكتريسيته است. مطالعاتي در رابطه با سلامتي انسان در مورد كساني كه در معرض ميدان مغناطيسي و انواع سرطانها از نوع لوكمي و سرطان مغز صورت گرفته است.
تعدادي از محققان در مورد ارتباط قرار گرفتن در معرض ميدان مغناطيسي و سرطان ترديد دارند. زيرا تفسير آن از نظر بيولوژيكي مشكل است و نتايج تحقيقات متفاوت به نظر مي‌رسد و با هم هماهنگي ندارند. بسياري از محققان توافق بر اين دارند كه نياز به اطلاعات بيشتري در خصوص تاثيرات ميدانهاي الكتريكي و مغناطيسي بر سلامت انسان داريم.
هدف از اين مجموعه فراهم آوردن اطلاعاتي در مورد تاثيرات ميدانهاي الكترومغناطيسي در محيط كار و درك علمي نگرانيها و ترديدهايي است كه در اين مورد وجود دارد.
● ميدان الكترومغناطيسي
ميدان الكترومغناطيسي به وسيله خطوط نيرو، سيمهاي برق و تجهيزات الكتريكي توليد مي‌شود. تاكيد اين مجموعه در مورد ارتباط ميدان مغناطيسي با توليد و انتقال كاربرد نيروي الكتريكي است. ميدانهاي مغناطيسي خطوط نامرئي نيرو هستند كه در اطراف هر وسيله الكتريكي وجود دارند. ميدان الكتريكي با ولتاژ توليد مي‌شود و قدرت آن با افزايش ولتاژ افزايش مي‌يابد. واحد قدرت الكتريكي بر حسب متر بر ولت مي‌باشد.
ميدان مغناطيسي نتيجه شدت جريان در سيمها يا وسايل الكتريكي مي‌باشد و قدرت آن با افزايش ولتاژ افزايش مي‌يابد. ميدان مغناطيسي بر حسب گوس يا تسلا اندازه‌گيري مي‌شود. از طرف ديگر ميدان الكتريكي حتي وقتي كه تجهيزات الكتريكي خاموش مي شود برقرار است و مدت زيادي با منبع
جريان برق ارتباط خود را حفظ مي‌كند. ميدان الكتريكي با عبور كردن از موادي كه هادي الكتريسيته هستند كاهش مي‌يابد. به عبارت ديگر ميدانهاي مغناطيسي از بسياري مواد عبور مي‌كنند و بنابراين جلوگيري از عبور آن بسيار مشكل است. با وجود اين كه ميدانهاي الكتريكي و مغناطيسي در اطراف وسايل الكتريكي و خطوط نيرو وجود دارند. تحقيقات اخير بر روي پتانسيل اثرات ميدانهاي مغناطيسي بر سلامت انسان متمركز گرديده‌اند. با وجود اين كه بعضي مطالعات اپيدمولوژيك ارتباط افزايش خطر ابتلا به سرطان را با در معرض ميدان مغناطيسي قرار گرفتن گزارش نموده‌اند اما ارتباط مشابهي در مورد ميدانهاي الكتريكي گزارش نشده است.
توسعه سريع علم و تكنولوژي، موجودات زنده را تحت تابش طيف وسيعي از ميدانهاي الكترومغناطيسي قرار داده است. پيشرفت فناوري و صنعت برق انسانها را در تماس با ميدان الكترومغناطيسي حاصل از وسايل برقي از جمله كامپيوتر شخصي، فر برقي، تلويزيون، يخچال و ... نيز خطوط انتقال نيروي با ولتاژ زياد قرار داده است.
● اثرات ميدانهاي الكترومغناطيسي بر انسان
اپيدمولوژي، مطالعه بر روي احتمال شيوع بيماريها در جمعيتهاي انساني است و اينگونه تحقيقات غالبا عيني هستند تا تجربه‌اي و اين بدان معناست كه اينگونه يك اپيدميولوژيست نمي تواند تمامي فاكتورهايي را كه موجب بروز بيماري مي‌شود كنترل كند و يا در آزمايشگاه تحقيق كند اگرچه تحقيقات آزمايشگاهي در اطراف محيط انساني و حيواني كاملا در مورد انسان صدق نمي‌كند. اپيدميولوژيستها مي‌توانند عوامل به وجود آورنده سرطان را مشخص كنند كه شامل دود سيگار است و اين در حالي است كه در مورد ميدانهاي الكترومغناطيسي ارتباطي بين معاشرت و اپيدمولوژي وجود ندارد. بعضي دانشمندان كه در اين مورد مطالعه كرده‌اند ارتباط موجود بين ميدانهاي الكترومغناطيسي و سرطانهاي خاص را وقتي كه خطر كم باشد و يا اصلا نباشد مشكل تفسير مي‌كنند حتي اگر احتمال ابتلا به سرطان ناشي از ميدانهاي الكترومغناطيس بسيار اندك باشد بايد آن را جدي تلقي نمود. زيرا در ميان تعداد كثير افرادي كه در معرض ميدانهاي الكترومغناطيس هستند حتي يك احتمال ناچيز هم مي‌تواند باعث افزايش سرطان در سطح گسترده شود.
● ارتباط سرطان با مشاغل صنعت برق
از سال ۱۹۸۲ تعدادي از اپيدميولوژيستها مطالعات و آزمايشاتي در اين مورد انجام داده‌اند و گزارشي از بررسي بيماري لوكمي روي افراد كه در معرض ميدان الكترومغناطيس بوده‌اند با افرادي كه در مشاغل ديگر كار كرده‌اند ارائه داده‌اند. در ايالات متحده اين بيماري در بزرگسالان از هر ۱۰۰۰۰۰ نفر ۱۰مورد در سال مشاهده مي‌شود و اين مطالعات شامل افرادي مي‌شود كه مستقيما با وسايل الكترومغناطيسي سر و كار دارند مثل مهندسان برق و يا افراد شاغل در خطوط تلفن و تلويزيون و تعميرات راديويي، اپراتورهاي ايستگاه برق، الكتريسيته و جوشكار. مطالعات ديگر ارتباط بين شيوع سرطان مغز و يا مرگ و مير در مشاغل مشابه را نشان مي‌دهد. اين تحقيقات اولين بار توسط دكتر Samuel Milham در سال ۱۹۸۲ كامل شده است. همچنين مطالعاتي در مورد ارتباط سرطان سينه و قرار داشتن در معرض ميدان الكترومغناطيسي صورت گرفته است. سرطان سينه در مردان نادر است اما متاسفانه در زنان بسيار رايج است. در ايالات متحده سرطان سينه از هر ۱۰۰۰ نفر بيش از يك مورد در سال مشاهده شده است. در يك مركز تحقيقاتي دانشگاهي در كاروليناي شمالي ميزان مرگ زناني كه در معرض ميدانهاي الكترومغناطيسي قرار داشته‌اند در اثر ابتلا به سرطان سينه بيشتر از زناني بوده است كه در چنين مشاغلي كار نكرده‌اند. اما با توجه به اين كه عوامل ديگري مثل فاكتور سن در تولد اولين نوزاد و باروري و تاريخچه ارثي در ايجاد اين نوع سرطان مؤثر مي‌باشند، لذا باعث اختلال در اين تحقيق شده است و با در نظر گرفتن اين مشكلات و نداشتن اطلاعات كافي پي بردن به عامل اصلي ايجاد اين بيماري غير ممكن به نظر رسيد و مطالعات ديگري كه در ايالات متحده و كشورهاي ديگر انجام شده است نشان ميدهد كه حتي زناني كه در خانه كار مي كنند و در معرض ميدان الكترومغناطيسي بالايي قرار دارند با خطرپيشرفت سرطان سينه مواجه بوده‌اند.
● ساير امراض ناشي از ميدانهاي الكترومغناطيسي
بيماري آلزايمر (Alzheimer) نوعي بيماري است كه در افراد سن بالا بروز مي‌كند و باعث ضعف تمركز و اختلال در يادآوري خاطرات مي‌شود. مطالعه و تحقيقاتي كه در سال ۱۹۹۵ در فنلاند و كاليفرنيا انجام گرديده نشان مي دهد كارگراني كه بيشتر در معرض ميدان الكترومغناطيس قرار گرفته بودند بيشتر به اين بيماري مبتلا شده‌اند. طبق گزارش دكتر Stephanie London و همكاران در سال ۱۹۹۴ به اين نتيجه رسيده‌اند كه افراد شاغل در صنايع برق و تلفن نسبت به افراد شاغل در ديگر صنايع بيشتر در معرض ميدانهاي الكترومغناطيس قرار دارند.
● اثرات بيولوژيكي ميدانهاي الكترومغناطيس
اين مجموعه اطلاعاتي در مورد تاثيرات ميدانهاي الكترومغناطيسي بر روي حيوانات و تقسيم سلولي به ما مي‌دهد و تاثيرات بيولوژيكي شامل تغييراتي در اعمال سلولها و بافتها و تغييراتي در فعاليت مغز استخوان انسان و ضربان قلب مي‌شود. اين قبيل مطالعات بر روي حيوانات آزمايشگاهي و حيوانات اهلي و نيز انسان بررسي شده است. طول موج، مدت در معرض امواج بودن، فاصله نسج با موج در تكثير سلولي و جزئيات تكثير مورد بررسي قرار گرفته است و باعث اختلال در تكثير سلولي در مرحله DNA سازي و نيز باعث افزايش بروز نقص مادرزادي و اختلال باروري و موتاسيونهاي مختلف مي‌شود و اين اختلال با مدت مجاورت با ميدان الكترومغناطيسي و نوع موج متناسب بوده است

ابررسانايي چيست ؟

 
از كشف ابررسانايي در سال 1911 ميلادي تا سال 1986 ، باور عموم بر آن بود كه ابررسانايي فقط مي تواند در فلزاتي در دماهاي بسيار پايين وجود داشته باشد، كه فقط در دماهاي حداكثر 25 درجه بالاي صفر مطلق اتفاق مي افتاد. با كشف ابررسانايي در دماهاي بالاتر در سال 1986 ، در موادي كه تقريبا ضد فرو مغناطيسي بودند، و در هواپيماهاي شامل a nearly square array of اتم هاي مس و اكسيژن، فصل جديدي در علم فيزيك باز كرد. حقيقتا، درك ظاهر شدن ابررسانايي در دماهاي بالا (حداكثر دماي 160 كلوين) يك مساله ي بزرگ براي بحث كردن مي باشد. تا آن جا كه امروزه بيش از ده هزار محقق روي اين موضوع تحقيق و بررسي انجام مي دهند.

پس از مقدمه اي بر مفاهيم پايه ي فلزات معمولي و مرسوم، دماي پايين، و ابررسانايي، مروري بر نتايج مشاهدات انجام شده در دهه ي گذشته خواهم داشت ، كه نشان مي دهند ابررساناهاي دماي بالا فلزات عجيبي با خواص غيرعادي بسيار بالاي ابررسانايي مي باشند. سپس، پيشرفت هاي نظري اخيري را شرح خواهم داد كه طبيعت چنين فلزات عجيب را آشكار مي سازد، و به شدت اين پيشنهاد را كه "تعامل مغناطيسي بين تحريكات ذره ي quasi مسطح است كه رفتار حالت عادي آن ها را به هم مي زند و باعث روي دادن حالت ابررسانايي در دماهاي بالا مي شود" پشتيباني و تاييد مي كنند.

مقدمه :

در سال 1911 ، H. Kamerlingh-Onnes هنگام كار كردن در آزمايشگاه دماي پايين خود كشف كرد كه در دماي چند درجه بالاي صفر مطلق، جريان الكتريسيته مي تواند بدون هيچ اتلاف اختلاف پتانسيل در فلز جيوه جريان پيدا كند. او اين واقعه ي منحصر به فرد را "ابررسانايي" (Superconductivity) ناميد. هيچ نظريه اي براي توضيح اين رخداد در طول پنجاه و شش سال بعد از كشف ارائه نگرديد. تا وقتي كه در 1957 ، در دانشگاه الينويس ، سه فيزيكدان : John Bardeen ، Leon Cooper ، و Robert Schrieffer نظريه ي ميكروسكوپي خود ارائه كردن كه بعدا با نام تئوري BCS (حروف ابتدايي نام محققان ) شناخته شد. سومين رخداد مهم در تاريخ ابررسانايي در سال 1986 اتفاق افتاد، وقتي كه George Bednorz و Alex Mueller ، در حال كار كردن در آزمايشگاه IBM نزديك شهر زوريخ سوئيس، يك كشف مهم ديگر كردند : ابررسانايي در دماهاي بالاتر از دماهايي كه قبلا براي ابررسانايي شناخته شده بودند در فلزاتي كاملا متفاوت از آنچه قبلا فلز ابررسانا شناخته مي شود. اين كشف باعث ايجاد زمينه ي جديد ي در علم فيزيك شد : مطالعه ابررسانايي دماي بالا، يا .

در اين مقاله، كه براي غير متخصص ها تنظيم گشته است، اين را كه ما چقدر در فهم دماي بالا پيشرفت كرده ايم را توضيح خواهم داد و درباره چشم انداز هاي آينده ي توسعه ي يك نظريه ي ميكروسكوپي بحث خواهم كرد. من با مروري بر برخي مفاهيم پايه ي نظريه ي فلزات شروع مي كنم؛ برخي اقدامات كه منجر به ارائه ي نظريه BCS گشت را توضيح مي دهم؛ و كمي در باره ي تئوري BCS بحث خواهم كرد و آن را توضيح خواهم داد. سپس مختصرا در باره ي پيشرفت هايي كه به فهم ما از ابررسانايي و ابرسيالي، در جهان ارائه شده است، بحث خواهم كرد، پيشرفت هايي كه بوسيله الهام از تئوري BCS بدست آمده اند. كه شامل كشف رده هاي زيادي از مواد ابرسيال مي باشد، از هليوم 3 مايع كه چند ميلي درجه بالاتر از صفر مطلق به حالت ابرسيالي در مي آيد تا ماده ي نوترون موجود در پوسته ي سياره ي نوترون، كه در چند ميليون درجه به حالت ابرسيالي در مي آيد. سپس درباره ي تاثيرات كشف مواد ابررساناي دماي بالا بحث خواهم كرد ، و برخي نتايج تجربي كليدي را جمع بندي خواهم كرد. سپس يك مدل براي ابررسانايي دماي بالا ارائه خواهم داد ، نزديك به نظريه ي ضد فرومغناطيسي مايع فرمي ، كه به نظر داراي توانايي ارائه ي مقدار زيادي از خواص غيرعادي حالت معمولي مواد ابررساناي سطح بالا مي باشد. من با يك توضيح تجربي براي خواص جالب توجه حالت عادي ابررساناهاي پيش بيني شده و در دست بررسي جمع بندي و نتيجه گيري مي كنم، كه يك رده جالب از مواد را معرفي مي كند : مواد قابل تطبيق پيچيده . كه در آن بازخورد غيرخطي طبيعي، چه مثبت و چه منفي، نقشي حياتي در تعيين رفتار سيستم باز ي مي كنند.

ابررساناهاي مرسوم : از كشف تا درك ...

در سخنراني نوبل خود در سال 1913 ، Kammerlingh-Onnes گزارش داد كه "جيوه در 4.2 درجه كلوين به حالت جديدي وارد مي شود، حالتي كه با توجه به خواص الكتريكي آن، مي تواند ابررسانايي نام بگيرد. او گزارش داد كه اين حالت مي تواند به وسيله ي اعمال ميدان مغناطيسي به اندازه ي كافي بزرگي از بين برود. در حالي كه يك جريان القاء شده در يك حلقه بسته ابررسانا به مدت زمان فوق العاده زيادي باقي مي ماند و از بين نمي رود. او اين رخداد را به طور عملي با آغاز يك جريان ابررسانايي در يك سيم پيچ در آزمايشگاه ليدن، و سپس حمل سيم پيچ همراه با سرد كننده اي كه آن را سرد نگه مي داشت به دانشگاه كمبريج به عموم نشان داد.

اين موضوع كه ابررسانايي مساله اي به اين مشكلي ارائه كرد كه 46 سال طول كشيد تا حل شود، خيلي شگفت آور مي باشد. دليل اول اين مي تواند باشد كه جامعه ي فيزيك تا حدود بيست سال مباني علمي لازم براي ارائه ي راه حل براي اين مسئله را نداشت : تئوري كوانتوم فلزات معمولي. دوم اينكه، تا سال 1934 هيچ آزمايش اساسي در اين زمينه انجام نشد. سوم اينكه، وقتي مباني عملي لازم بدست آمد، به زودي واضح شد انرژي مشخصه وابسته به تشكيل ابررسانايي بسيار كوچك مي باشد، حدود يك ميليونيم انرژي الكترونيكي مشخصه ي حالت عادي. بنابراين، نظريه پردازان توجه شان را به توسعه ي يك تفسير رويدادي از جريان ابررسانايي جلب كردند. اين مسير را Fritz London رهبري مي كرد. كسي كه در سال 1953 به نكته ي زير اشاره كرد :‌ "ابررسانايي يك پديده كوانتومي در مقياس ماكروسكوپي مي باشد ... با جداسازي حالت حداقل انرژي از حالات تحريك شده بوسيله ي وقفه هاي زماني." و اينكه "diamagntesim يك مشخصه بنيادي مي باشد."

اجازه بدهيد كمي درباره ي مباني علمي كوانتومي بحث كنيم. الكترون ها در فلز در پتانسيل متناوب توليد شده از نوسان يون ها حول وضعيتشان حركت مي كنند. حركت يون ها را مي توان بوسيله ي مد هاي جمعي كوانتيزه شده ي آنها، فونون ها، توجيه كرد. سپس در طي توسعه ي نظريه ي كوانتوم، نظريه ي پاولي اصل انفجار وجود دارد ، كه معناي آن بيانگر مفهوم آن است و آن اينكه - الكترونها به صورت اسپين نيمه كامل ذاتي (half integral intrinsic spin) قرار مي گيرند، و در نتيجه هيچ الكتروني نمي تواند طوري قرار بگيرد كه عدد كوانتوم آنها با هم يكي باشد. ذراتي كه به صورت اسپين نيمه كامل ذاتي قرار مي گيرند با نام فرميون ها (fermions) شناخته مي شوند، به خاطر گراميداشت كار هاي فرمي (Fermi) كه ، همراه با دياك (Diac) ، نظريه ي آماري رفتار الكترون در دماهاي محدود را توسعه دادند، اين تئوري با نام Fermi-Diac statistics شناخته مي شود. در توضيح فضاي اندازه حركت يك فلز ساده، حالت پايه يك كره در فضاي اندازه ي حركت مي باشد، كه اندازه ي شعاع آن، pf بوسيله ي چگالي فلز تعيين مي گردد. انرژي خارجي ترين الكترون ها، در مقايسه با انرژي گرمايي ميانگين آن ها، Kt بسيار بزرگ مي باشد. به عنوان نتيجه، تنها بخش كوچكي از الكترون ها ، ، در بالاتر از حالت پايه تحريك مي شوند. الكترون ها با هم ديگر ( قانون كلمب ) و با فونون ها تعامل مي كنند و رابطه دارند. تحريكات ابتدائي آن ها ذرات quasi ، (quasiparticles) مي باشند ، الكترون ها با ضافه ي ابر الكتروني وابسته به آنها و فونون هايي كه هنگام حركت از ميان شبكه الكترون را همراهي مي كند. يك بحث و مذاكره ي ابتدائي نشان مي دهد كه طول عمر يك quasiparticle تحريك شده بالاي سطح فرمي ( سطح كره ي فرمي ) تقريبا برابر مي باشد. مساله و مشكلي كه براي نظريه پردازان در رابطه با اين مساله پيش آمده، فهم چگونگي تحمل پذيري الكترون ها ي تعامل كننده هنگام رفتن به حالت ابررسانايي ، مي باشد. اين امر چگونه انجام مي شود ؟ توضيح رياضي مناسب براي اين امر چه مي باشد ؟

يك كليد راهنماي بسيار لازم در سال 1950 ميلادي بدست آمد، وقتي محققان در Nationa Bearue of Standards و دانشگاه روتگرز كشف كردند كه دماي انتقال به حالت ابررسانايي سرب بستگي به جرم ايزوتوپ آن، يعني M ، دارد ، و رابطه ي عكس با M1/2 دارد. از آنجايي كه انرژي لرزشي شبكه اي همان بستگي را با M1/2 دارد، كوانتاي پايه ي آنها، فونون ها ، بايد نقشي در ظهور و ايجاد حالت ابررسانايي بازي كند. در سال هاي بعدي، Herber Frohlich ، كه از پوردو از دانشگاه ليورپول بازديد مي كرد، و John Bardeen كسي كه آن زمان در آزمايشگاه هاي بل كار مي كرد، تلاش كردند نظريه اي با استفاده از تعامل الكترون ها و فونون ها ارائه بدهند، ولي شكست خوردند و موفق نشدند. كار انجام شده توسط آن ها را مي توان به كمك دياگرام هاي معرفي شده توسط ريچارد فاينمن (Richar Feynman) به تصوير كشيد، كه در قسمت (a) تصوير زير نشان داده شده است. در تصوير زير مي توان يك الكترون را مشاهده كرد كه يك فونون را آزاد مي كند و سپس آن را جذب مي كند. خواص آن بوسيله جفت شدن پويا با شبكه تغيير مي يابند و تغيير در انرژي آن نسبت عكس با M1/2 دارد . اما اين quasiparticle ها به حالت ابررسانايي در نمي آيند.

سپس Frohlich احتمال دوم را در نظر گرفت، حالتي كه در تصوير بالا قسمت (b) نشان داده شده است، كه در آن يك الكترون يك فونون را آزاد مي كند و الكترون دومي آن فونون را جذب مي كند. اين تعامل فونون القايي مي تواند براي الكترون ها ي نزديك سطح فرمي جذاب باشد. اين يك معادله فلزي waterbed مي باشد : دو شخص كه يك waterbed را به اشتراك مي گذارند، تمايل دارند تا به مركز آن جذب شوند، همان طوري كه روند القاء الكترون ها را جذب مي كند. (يك شخص تورفتگي را در waterbed القاء مي كند، تورفتگيي كه شخص دوم را جذب مي كند.) تعامل مطالعه شده توسط Frohlich در نگاه جذاب و زيبا به نظر مي رسد، كه هم جديد بود و هم ذاتا تناسب درستي با جرم ايزوتوپي، M ، داشت. اگر چه مشكلي بزرگ در درك چگونگي نقش بازي كردن آن وجود داشت، از آن جا كه تعامل پايه اي كلمب (Coulomb) بين الكترون ها دفع كننده مي باشد، و خيلي قوي تر مي باشد. همانطور كه لاندو (Laundau) قرار داد : "شما نمي توانيد قانون كولمب را لغو كنيد." اين اشكالي بود كه John Bardeen و نويسنده ي اين مقاله، ديويد پاينس (David Pines) (هنگامي كه اولين دانشجوي دكترا در دانشگاه ايليونيس در سال هاي 1952-1955 بود) ، آن را مورد انتقاد قرار دادند. چيزي كه آن ها پيدا كردند، به وسيله ي توسعه ي يك راهبرد كه David Bohm و David Pines قبلا براي فهم تعامل هاي جفت الكترون ها در فلزات توسعه داده بودند، اين بود كه "پيام ، متوسط است ." ("The Medium is the message") . وقتي آن ها اثر رويه ي به پرده در آوردن الكترونيكي (Electronic Screening) روي هر دو تعامل الكترون-الكترون و الكترون-آهن را در نظر گرفتند، فهميدند كه حضور جزء تشكيل دهنده ي دومي، يونها ، يك تعامل جذاب شبكه اي را بين يك جفت الكترون كه تفاوت انرژي آن ها از انرژي يك فونون بنيادين كمتر مي باشد، ممكن مي سازد .

كه در آن ثابت دي الكتريك استاتيك وابسته به watervector مي باشد، انرژي فونون مي باشد، q انتقال اندازه ي حركت مي باشد، و تفاوت بين انرژي الكترون ها مي باشد. ترتيب ها آن به صورت جزئي تر توسط Leon Cooper مطالعه شده است . او فهميد كه به خاطر اين جذابيت شبكه اي، سطح فرمي حالت عادي مي تواند در دماهاي پائين به تشكيل جفت الكترون هايي با اسپين و اندازه حركت مخالف، بي ثبات شود. با كار او، راه حلي براي ابررسانايي نزديك بود. در سال 1957 ميلادي، هنگامي كه Bob Schrieffer ، كسي كه دانشجوي فارغ التحصيلي Bardeen در دانشگاه اليونيس بود، فهميد كه توضيح ميكروسكوپي داوطلب حالت ابررسانايي، مي تواند با به كار بردن راهبردي كه قبلا براي پلارن ها توسعه يافته بود، توسعه يابد. (به وسيله ي T.D. Lee ، Francis Low و David Pines ) به جفت هاي تعامل كننده ي كوپر. در هفته هاي بعدي، Bardeen ، Cooper ، و Schrieffer نظريه ي ميكروسكوپي ابررسانايي خود، تئوري BCS را ارائه دادند. كه اين تئوري در توضيح و تفسير رويداد ها ي ابررسانايي موجود و هم چنين در پيش گويي رويداد هاي جديد بسيار موفق بود. در جولاي 1959 ، در اولين كنفرانس عظيم در رابطه با ابررسانايي بعد از ارائه ي نظريه ي BCS ، (در دانشگاه كمبريج) ، David Schoenberg كنفرانس را با اين جمله آغاز كرد : "حالا ببينيم تا چه حدي مشاهدات با حقايق نظري جور در مي آيند ..."

تئوري BCS و اثرات آن

در تئوري BCS جذابيت زيادي بين جفت الكترون هاي داراي اسپين و اندازه حركت مخالف هستند و مسئول انتقال به حالت ابررسانايي هستند وجود دارد. پايين درجه ي حرارت تبديل به حالت ابررسانايي، ، جفت هايي از هم چگال ها، يك حالت كوانتومي يگانه ي اشغال شده ي ماكروسكوپيك، كه بدون مقاومت جريان مي يابد، و ميدان هاي مغناطيسي خارجي ضعيف را screen out مي كند، باعث بوجود آمدن يك ديامگنتيزم اندازه گيري شده در اثر ميزنر (Meissner) مي شود. در دماهاي پايين، اين باعث مصرف انرژي محدودي مي گردد، ، براي جداسازي يكي از جفت ها در هم چگال؛ اين شكاف انرژي است كه توسط London پيش بيني شده بود؛ و اثرات آن بر روي خواص ابررسانايي توسط John Bardeen در سال هاي قبل از كشف و ارائه ي تئوري ميكروسكوپي به صورت رخدادي بررسي شده بود.بنابراين، حالت ابررسانايي توسط دو جزء تشكيل دهنده مجزا مشخص مي شود : يك ابرميدان (superfield) ، هم چگال، و يك سيال معمولي تشكيل شده از تحريكات تك ذره اي كه از جدا شدن از هم هم چگال در دماهاي محدود نتيجه مي شود. quasiparticle هاي تحريك شده كه سيال معمولي را تشكيل مي دهد، در پاسخ به ميدان هاي خارجي ، اثرات منسجم معلوم و مشخصي را از خود نشان مي دهند، پديده ي انسجام كه يكي از مشخص كننده هاي تئوري جفت كننده ي BCS مي باشد، اما وگرنه بصورت معمولي رفتار مي كنند، كه در آن با يكديگر، با فونون ها ، و با ديواره هاي ظرف شامل آن ها برخورد مي كنند. طول بنيادي كه رفتار منسجم در آن مي تواند اتفاق بيافتد، طول انسجام (coherence length) ، چند هزار برابر فاصله ي بين ذرات داخلي مي باشد. براي درك كردن آن چه اتفاق مي افتد، در نظر گرفتن قياس با يك زمين رقص پر شده از زوج هاي رقاص كه هماهنگ با موزيك حركت مي كنند، مي تواند كمك كننده باشد. در حالت عادي، زوج ها مرتبا با يكديگر برخورد مي كنند، اما در حالت ابررسانايي، آن زوج هايي كه تعلق به هم چگال دارند، داراي يك قيد و بند نامرئي مي باشند كه به آن ها اجازه مي دهد تا به راحتي به حول سالن رقص رقص كنند(a la Rogers And Astaire) و پرواز كنند. اگر زوج هاي جدا كننده اي وجود دارند؛ فقط منفردهاي تحريك شده ي غير متصل هستند كه با يكديگر و ديوار ه ي سالن رقص برخورد مي كنند. تبديل به ابررسانايي BCS اساسا متفاوت از آن چه ممكن است اگر زوج ها بالاي تشكيل شده باشند، سپس متراكم شوند، اتفاق بيافتد، مي باشد. و در مورد اخر، طول انسجام چندين برابر فضاي بين ذره اي مي باشد و بستگي به ندارد.

نظريه ي BCS اثر قابل توجهي در زمينه هاي ديگر فيزيك داشت. اين نظريه پيش بيني مي كند كه هر سيستم داراي فرميون هاي تعامل كننده، مي تواند به حالت ابررسانايي برود ، يا در صورت فرميون هاي بدون بار، يك تبديل ابرسيالي، يكي داراي تعامل جذاب براي فرميون هاي شبكه اي در مجراي تكانه ي زاويه اي ارائه دهد. كمي بعد از انتشار نتايج اوليه ي تئوري BCS ، Aage Bohr ، Ben Mottleson و David Pines ، در حال كار در كپنهاگ در سال 1957 ، نشان دادند كه نوترون ها و پروتون هاي موجود در هسته ي اتم به خاطر جذب دوسويه شان جفت مي شوند، و اينكه مي توان معماي قديمي پديده ي هسته اي را توجيه كند، در حالي كه Yoichiro Nambu در شيكاگو كشف كرد كه ترتيب جفت كردن BCS براي پديده هاي انرژي بالا در فيزيك ذرات ابتدائي پيدا مي شود. حضور ابرسيالات پروتون و نوترون در پالسارهاي (pulsar) تازه كشف شده در 1989 احضار شد. (توسط Gordon Baym ، Chris Pethick ، Mal Ruderman ، و David Pines ) به عنوان توضيح براي زوال طولاني مدت glitch ها (پرش هاي ناگهاني در مدت چرخش پالسار) كه در پالسارهاي Vela و Crab در سپتامبر و مارس 1969 كشف شده بود. از آنجايي كه اتمهاي هليوم 3 فرميون هستند و داراي جذب برد بالا مي باشند، به طور وسيعي انتظار مي رفت كه هليوم 3 به تبديل حالت ابرسيال برود، و جامعه فيزيك دماي پايين به دنبال نشانه هايي از آن تبديل گشت، يك جستجويي كه براي Doug Osheroff ، David Lee ، و Bob Richardson در دانشگاه كورنل موفقيت آميز بود، و در سال 1972 كشف كردند كه هليوم 3 چند ميلي درجه بالاي صفر مطلق ابر سيال مي شود.

نيازي به گفتن نيست كه، الهام شده توسط تئوري BCS ، آزمايشگر هاي مواد منقبض، رده ي جديدي از فلزات ابررسانا را معرفي كردند، و مشتاقانه به دنبال موادي كه در دماهاي نسبتا بالاتر از دماهاي تبديل كمتر از 20 كلوين، كه فلزات ابررساناي معمولي را مشخص مي كند، ابررسانا مي شوند، گشتند. دو رده ي جديد از ابررساناها كشف شدند : مواد الكترون سنگين ، CeCu2Si2 ، UPt3 ، و UBe13 كه توسط Frank Steglich ، Zackary Fisk ، Jim Smith ، و Hans Ott در آلمان، در حال كار كردن در Los Alamos ، به عنوان ابررسانا در دماهاي حدود يك كلوين شناخته شدند. در حالي كه Daniel Jerome در پاريس ابررسانايي را در فلزات آلي تقريبا دو بعدي در حدود ده درجه ي كلوين را كشف كرد. اگرچه ، باوجود تلاش هاي زياد Bend Matthias ، كه حدود صد ماده ي ابررسانا را كشف كرد، هنوز حد بالايي براي دماي مواد ابررسانا وجود داشت : 23 درجه ي كلوين ، درجه ي حرارتي كه از مكانيسم به كار رفته براي ابررسانايي ناشي مي شد، تعامل فونون-القائي.

ابررساناهاي دمابالا

زمينه اي جديد در علم فيزيك آغاز شد هنگامي كه در 27 ژانويه 1986 ميلادي، Bednorz و Mueller يك افت مقاومت تيز را در La2-mBamCuO4 در دماي حدود 30 درجه ي كلوين مشاهده كردند. آن ها مقاله اي در اين باره به يكي از روزنامه هاي معتبر اروپائي، ZeitSchrift fur Physik فرستادند و مطالعه ي خود را برروي اين ماده ي جديد ادامه دادند تا اطمينان حاصل كنند كه تغيير مقاومت ناگهاني، تبديل به يك حالت ابررسانايي بوده. تا ماه اكتبر، آن ها اثر مايزنر (The Meissner Effect) را مشاهده كرده بودند ، بنابراين يك ماده ابررساناي جديد را به ثبت رساندند. نتايج آن ها در دنيا پخش شد، يك ماه بعد، Tanaka و همكاران وي در توكيو نتايج Bednorz-Muller را تأييد نمودند (يك تأييديه در يكي از روزنامه هاي ژاپني چاپ شد) در حالي كه كار آن ها در پكن توسط Zou و همكارانش پشتيباني و حمايت شد. (كار آنها در دسامبر در يكي از روزنامه ها توضيح داده شد.) در ماه بعد، در نتيجه ي يك تلاش همكارانه بين Paul Chu از دانشگاه هوستون و Mang-Kang Wu از دانشگاه آلاباما، عضو جديدي از خانواده مواد ابررساناهاي دما بالا كشف شد ، YBa2Cu3O7 كه داراي بالاي 70 درجه ي كلوين بود. بنابراين فقط در طي يك سال از كشف اصلي، دماي انتقال به حالت ابررسانايي افزايش سه برابر داشت. و واضح بود كه انقلاب ابررسانا ها هنوز شروع شده است. يك جشن براي بوجود آمدن اين فصل در علم فيزيك طي يك جلسه در نيويورك توسط انجمن فيزيك دانان آمريكايي در يك بعد از ظهر يكي از روزهاي مارس 1987 برگزار شد. اين جشن 3000 شركت كننده داشت و 3000 نفر نيز اين جشن را از طريق تلويزيون مشاهده مي كردند ...

در طول شش سال بعد، چند خانواده ي ديگر از ابررسانا ها كشف شدند، كه شامل سيستمهاي مبني بر -Tl و -Hg مي باشند، كه به ترتيب داراي حداكثر 120 كلوين و 160 كلوين مي باشند. همگي آنها يك ويژگي كه موجب روي دادن ابررسانايي دماي بالا بود، داشتند، وجود پلين هاي (planes) شامل اتم هاي O و Cu ي كه جدا شده بوسيله ي مواد پل كننده اي كه به عنوان حامل بار عمل مي كنند هستند. در طي اين مدت، حدود چند هزار مقاله در رابطه با ابررسانا ها منتشر گشت (و در زمان حاضر هم منتشر مي شود) بديهي گشت كه ابررسانايي دماي بالا وابسته به مسائل بزرگ فيزيك بسياري در طول دهه ي گذشته ي اين قرن بود. حداقل چهار دليل براي علاقه ي شديد به بالا وجود دارد : يك علاقه ي علمي ذاتي و باطني، طبيعت انتقال نظم و ترتيبي، (اين به حدود جدا كننده ي دانشمندان و شيمي دان هاي مواد از طريق فيزيكدان هاي نظري و تجربي مي رسد) ؛ كاربردهاي بالقوه براي مواد ي كه دردماهاي بالاتر از 77 كلوين (دمايي كه نيتروژن مايع مي شود) به عنوان ابررسانا عمل مي كنند، كاربردهايي كه مي توان در سيستم هاي تلفن سلولي اعمال كرد، خطوط انتقال ابررسانايي، ماشين هاي MRI استفاده كنند از مغناطيس هاي بالا، ميكروويو هاي استفاده كننده از مواد ابررساناي جديد، سيستم هاي ابررسانا/نيمه رساناي هيبريدي؛ و در آخر پيدا كردن ابررساناي دماي اتاق.

برخي مشخصه ها و خواص ابررسانا هاي جديد عبارتند از اينكه آن ها سراميك، و اكسيد هاي ورقه ورقه مي باشند كه در دماي اتاق فلزات ضعيف و بي ارزشي هستند، و مواد متفاوتي براي كار كردن هستند. شامل كمي حامل بار در مقايسه با فلزات معمولي هستند، و خواص انيسوتوروپيك (Anisotropic) الكتريكي و مغناطيسي هستند كه بطور قابل ملاحظه اي حساس به محتواي اكسيژن مي باشند. در حالي كه، نمونه هاي ابررساناي مواد 1-2-3 ، Yba2Cu3O7 ، را يك دانش آموز دبيرستاني نيز مي تواند در يك اجاق ميكروويو توليد كند، كريستال هاي يكتاي داراي درجه ي خلوص بالا براي تشخيص خواص فيزيكي ذاتي موادي كه ساختن آن ها به طور خيلي زيادي سخت است، لازم است.

در ادامه ي يك دهه كار، يك وفاق عمومي بر سر اين موضوع وجود دارد كه رفتار تحريكات ابتدائي در پلين هاي (planes) ، Cu-O يك كليد براي درك خواص حالت عادي اين ابررساناها ارائه مي دهد، و اينكه آن خاصيت غير حالت عادي شبيه به حالت عادي ابررساناهاي معمولي و دماي پايين مي باشند. همانطور كه مي توان در جدول زير مشاهده كرد، هم پاسخ بار (charge respons) - (اندازه گيري شده در مشاهدات نوري و انتقالي) و هم پاسخ اسپين (اندازه گيري شده در مشاهدات قابليت ايستا، تشديد مغناطيسي هسته اي (NMR) و مشاهدات متفرق ساختن غير الاستيك نوتورون ها (INS)) مواد بالا بسيار متفاوت از همتاهاي دماي پايين خود مي باشند.

علاوه بر اين، اساسا هيچ يك از خواص حالت ابررسانايي ، با خواص يك ابررساناي عادي يكي نيست، كه در آن جفت كردن BCS در حالت خط واحد اتفاق مي افتد و شكاف انرژي ذرات quasi در دماهاي پائين و ايزوتپريك، هنگامي كه يكي حول سطح فرمي حركت مي كند، محدود مي باشد. علي رغم اين حقيقت كه چيزي نسبتا جديد و متفاوت نياز است تا رفتار حالت عادي را درك كنيم، يك توافق و اجماع وجود دارد كه تئوري BCS ، اگر بطور مناسبي تغيير يابد، يك توضيح راضي كننده براي انتقال به حالت ابررسانايي و خواص مواد در آن حالت، مي دهد .

يك توافق تقريبي همچنين در رابطه با اجزاي سازنده ي پايه ي لازم براي درك ابررساناهاي دماي بالا وجود دارد. آن ها را مي توان به صورت زير خلاصه كرد :

عمل ابتدا در پلين هاي Cu-O رخ مي دهد، پس در تخمين اول، براي متمركز كردن هم توجه نظري و هم عملي روي رفتار تحريكات پلانار، و همچنين براي متمركز كردن بر روي دو سيستم مطالعه شده ، سيستم 1-2-3 (YBa2Cu3O7-m) و سيستم 2-1-4 (La2-mSrmCuO4) ، كفايت مي كند.

در دماهاي پائين هر دو سيستم عايق هاي آنتي فرو مغناطيس مي باشند با يك آرايه ي محلي +Cu2 كه علامت آن در داخل شبكه متناوبا عوض مي شود .

شخصي سوراخ هايي را بر روي پلين هاي Cu-O سيستم 1-2-3 با تزريق اكسيژن ايجاد مي كند، براي سيستم 2-1-4 اين كار با تزريق استرونتيوم انجام مي گيرد. سوراخ هاي حاصل روي مقر پلانار اكسيژن ، با اسپين هاي نزديك +Cu2 پيوند پيدا مي كنند، و حركت را براي ديگر اسپين هاي +Cu2 آسان مي سازد، و در روند، نابود كردن همبستگي هاي AF طولاني برد در عايق.

اگر كسي حفره هاي كافي را ايجاد كند، سيستم حالات پايه ي خود را از يك عايق به يك ابررسانا تغيير مي دهد.

در حالت عادي مواد ابررسانا ، اسپين هاي +Cu2 سيار، اما محلي يك مايع فرمي غير مرسوم را تشكيل مي دهند ، با اسپين هاي quasiparticle هاي نشان دهنده ي ارتباطات AF قوي، حتي براي سيستم هاي در سطح تخدير كه از حدي كه ماكزيمم مي باشد، تجاوز مي كند ، موادي كه با نام فرا-تخدير شناخته مي شوند. اگر چه هيچ توافقي بين تئوريسين ها بر سر اين كه چگونه يك توضيح نظريه اي داراي جزئيات براي curpate ها ارائه كنند. راهكرد هايي كه براي اينكار امتحان شد، را مي توان به از پايين به بالا- يا از بالا به پايين رده بندي كرد. در راهكرد از بالا به پائين، يكي مدلي را كه از قبل وجود داشته را انتخاب مي كند و راه حل هايي براي انتخاب هاي ديگر پارامترهاي مدل را توسعه مي دهد ، سپس تست مي كند كه آيا اين راه حل به نتايج منطبق بر شواهد و تجربيات رسيده اند يا نه. در يك راهكرد از پائين به بالا، يك از نتايج تجربي آغاز مي كند و تلاش مي كند تا يك توضيح پديده اي از يك زير مجموعه از نتايج تجربي را بدست آورد. سپس چند آزمايش ديگر را متناسب با توضيح بدست آمده انجام مي دهد ، با ترتيب ميكروسكوپي براي هر آزمايش، تا اينكه به نتايج مورد انتظار از محاسبات و مشاهدات دست بيابد. و فقط آن وقت، بدنبال يك مدل هميلتوني كه راه حلش ممكن است تئوري ميكروسكوپي كامل را ارائه دهد، بگردد و جستجو كند. Jonh Bardeen از اين راهكرد دوم براي كار كردن بر روي ابررساناهاي عادي و مرسوم استفاده كرد ، و در دانشگاه اوربانا از روش و راهكرد او براي كار برروي ابررساناي دماي بالا استفاده كردند.

اثر هارمونيك ها بر خازن ها

 نقش خازنها به عنوان المان هاي الكتريكي و الكترونيكي كارآمد در صنايع مربوط به توليد و انتقال و توضيع امروزي غير قابل انكار است بگونه اي كه ديگر هرگز نمي توان چنين صنايعي را بدون وجود خازنهاي نيرو متصور شد.از اين رو شناخت كامل خازنها و عوامل تاثير گذار برآنها و حفظ و نگهداري و نظارت دقيق بر آنها ، براي افزايش طول عمر خازن ها و كار كرد بهينه آنها امري است الزامي و اجتناب ناپذير.
درسالهاي اوليه هارمونيكها در صنايع چندان رايج نبودند.به خاطر مصرف كننده هاي خطي متعادل. مانند : موتورهاي القايي سه فاز،گرم كنندها وروشن كننده هاي ملتهب شونده تا درجه سفيدي و ..... اين بارهاي خطي جريان سينوسي اي در فركانسي برابر با فركانس ولتاژ مي كشند. بنابراين با اين تجهيزات اداره كل سيستم نسبتا با سلامتي بيشتري همراه بود. ولي پيشرفت سريع در الكترونيك صنعتي در كاربري صنعتي سبب بوجود آمدن بارهاي غير خطي صنعتي شد. در ساده ترين حالت ، بارهاي غيرخطي شكل موج بار غير سينوسي از شكل موج ولتاژ سينوسي رسم مي كنند (شكل موج جريان غير سينوسي).
پديدآورنده هاي اصلي بارهاي غير خطي درايوهاي AC / DC ، نرم راه اندازها ، يكسوسازهاي 6 / 12 فاز و ... مي باشند. بارهاي غيرخطي شكل موج جريان را تخريب مي كنند. در عوض اين شكل موج جريان شكل موج ولتاژ را تخريب مي نمايد. بنابراين سامانه به سمت تخريب شكل موج  در هر دوي ولتاژ و جريان مي شود. در اين مقاله سعي شده است تا بزباني هرچه ساده تر توضيحي در مورد نحوه عملكرد هارمونيك ها و راه كاري براي دوري از تاثير گذاري آنها بر خازنها ي نيرو ارائه شود.

اساس هارمونيك ها :

اصولا هارمونيك ها آلوده سازي شكل موج را در اشكال سينوسي آنها نشان مي دهند. ولي فقط در مضارب فركانس اصلي . تخريب شكل موج را مي توان در فركانس هاي مختلف (مضارب فركانس اصلي) بعنوان يك نوسان دوره اي بوسيله آناليز فوريه تجزيه و تحليل كرد. در حال حاضر هارمونيكهاي فرد و زوج و مرتبه 3 در اندازه هاي مختلف ضرايب فركانس هاي مختلف در سامانه هاي الكتريكي موجودند كه مستقيما تجهيزات سامانه الكتريكي را متاثر مي سازند. در معنايي وسيعتر هارمونيكهاي زوج و مرتبه 3 هريك تلاش مي كنند كه ديگري را خنثي نمايند. ولي در مدت زماني كه بار نا متعادل است اين هارمونيك هاي زوج و مرتبه 3 منجر به اضافه بار در نول و اتلاف انرژي شديد مي شوند. با تمام احوال هارمونيك هاي فرد اول مانند هارمونيك پنجم ، هفتم ، يازدهم ، سيزدهم و .... عملكرد اين تجهيزات الكتريكي را تحت تاثير قرار مي دهند. براي فهم بهتر تاثير هارمونيك ها ، شكل زير تاثير تخريب هارمونيك پنجم بر شكل موج سينوسي را نشان مي دهد :

 
 

هارمونيك هاي ولتاژ و جريان تاثيرات متفاوتي بر تجهيزات الكتريكي دارند. ولي عموما بيشتر تجهيزات الكتريكي به هارمونيكهاي ولتاژ بسيار حساس اند. تجهيزات اصلي نيرو مانند موتورها، خازن ها و غيره بوسيله هارمونيكهاي ولتاژ متاثر مي شوند. به طور عمده هارمونيكهاي جريان موجب تداخل مغناطيسي (Magnetic Interfrence) و همچنين موجب افزايش اتلاف در شبكه هاي توزيع مي شوند. هارمونيكهاي جريان وابسته به بار اند ، در حالي كه سطح هارمونيكهاي ولتاژ به پايداري سامانه تغذيه و هارمونيكهاي بار (هارمونيكهاي جريان) بستگي دارد. عموما هارمونيك هاي ولتاژ از هارمونيك هاي جريان كمتر خواهند بود.    
 

تشديد:

اساسا تشديد سلفي – خازني در همه انواع بارها مشاهده مي شود. ولي اگر هارمونيك ها در شبكه توضيع شايع نباشند تاثير تشديد فرونشانده مي شود.
در هر تركيب سلفي – خازني چه در حالت سري و چه در حالت موازي ، در فركانسي خاص تشديد رخ مي دهد كه اين فركانس خاص فركانس تشديد ناميده مي شود. فركانس تشديد فركانسي است كه در آن رآكتنس خازني (Xc) و رآكتنس القايي (XL) برابر هستند.
براي تركيبي مثالي براي بار صنعتي كه شامل اندوكتانس بار و يا رآكتنس ترانسفورماتور كه بعنوان XL عمل مي كند و رآكتنس خازن تصحيح ضريب توان كه بصورت Xc خودنمايي مي كند فركانس تشديدي برابر با LC خواهيم داشت . رآكتنس خازني متناسب با فركانس كاهش مي يابد (توجه : Xc با فركانس نسبت عكس دارد). در حاي كه رآكتنس القايي متناسب با آن افزايش مي يابد (توجه
: XL با فركانس نسبت مستقيم دارد).اين فركانس تشديد به سبب متغير بودن الگوي بار متغير خواهد بود. اين مساله براي ظرفيت خازني ثابت كل براي اصلاح ضريب توان پيچيده تر است. براي درك صحيح اين پديده لازم است دو نوع وضعيت تشديد شامل حالت تشديد سري و حالت تشديد موازي مورد توجه قرار گيرند. اين دو امكان در زير توضيح داده مي شوند.
 
تشديد سري:

يك تركيب سري رآكتنس سلفي – خازني ، مدار تشديد سري شكل مي دهد كه در شكل زير نشان داده شده است.
 
 
به خاطر تركيب سري سلف و خازن ، در فركانس تشديد امپدانس كل به پايين ترين سطح كاهش مي يابد و اين امپدانس در فركانس تشديد طبيعتي مقاومتي دارد. بنا براين در فركانس تشديد رآكتنس خازني و رآكتنس سلفي (القايي) برابر هستند.اين امپدانس پايين براي توان ورودي در فركانس تشديد ، افزايش تواني جريان را نتيجه مي دهد.شكل داده شده زير رفتار امپدانس خالص در وضعيت تشديد سري را نشان مي دهد.

 
 


در كاربري صنعتي رآكتنس ترانسفورماتور قدرت به علاوه خازنهاي اصلاح ضريب توان در سمت ولتاژ پايين به عنوان يك مدار تشديد موازي براي سمت ولتاژ بالاي ترانسفورماتور عمل مي كند. اگر اين فركانس تشديد تركيب سلف و خازن بر فركانس هارمونيك شايع در صنعت منطبق شود ، بخاطر بستري با امپدانس پايين ارائه شده توسط خازن ها براي هارمونيك ها ، منجر به افزايش تواني جريان خازن ها خواهد شد. از اين رو خازن هاي ولتاژ پايين در سطحي بسيار بالا اضافه بار پيدا خواهند كرد كه همچنين اين عمل موجب تحميل بار اضافي بر ترانسفورماتور مي شود. اين پديده منجر به تخريب ولتاژ در شبكه ولتاژ پايين مي شود.
 

تشديد موازي:


يك تشديد موازي تركيبي از رآكتنس خازني و القايي است كه در شكل زير نمايش داده شده است.
 
 

در اينجا رفتار امپدانس برعكس حالت تشديد موازي خواهد بود كه در شكل داده شده در زير ، نشان داده شده است.در فركانس تشديد امپدانس منتجه مدار به مقداري بالا افزايش مي يابد. اين ، منجر به بوجود آمدن مدار تشديد موازي ميان خازن هاي اصلاح ضريب توان و اندوكتانس بار مي شود كه نتيجه آن عبور ولتاژ بسيار بالا هم اندازه  امپدانس ها و جريان هاي گردابي بسيار بالا درون حلقه خواهد بود.

 
 


در كاربري صنعتي خازن اصلاح ضريب توان مدار تشديد موازي با اندوكتانس بار تشكيل مي دهد.هارمونيك هاي توليد شده از سمت بار رآكتنس شبكه را افزايش مي دهند. كه موجب بلوكه شدن هارمونيك هاي سمت تغذيه مي شود.اين منجر به تشديد موازي اندوكتانس بار و اندوكتانس خازني مي شود. مدار LC (سلفي – خازني) مواز ي ، شروع به تشديد ميان آنها مي كند كه منجر به ولتاژ بسيار بالا و جريان گردابي بسيار بالا در درون حلقه مدار سلف – خازن (LC) مي شود. نتيجه اين امر آسيب به تمام سمت ولتاژ پايين سامانه الكتريكي است.
ايزوله كردن تشديد موازي از ايزولاسيون تشديد سري نسبتا پيچيده تر است.اساسا اين امر بخاطر تنوع بار صنعتي از زماني به زمان ديگر است كه موجب تغيير فركانس تشديد مي شود. شكل زير تاثير ظرفيت خازني ثابت و اندوكتانس متغير را نشان مي دهد.
 


 
اين تغيير مداوم فركانس تشديد ممكن است موجب تطبيق فركانس تشديد بر فركانس هارمونيك شود كه ممكن است منتج به ولتاژ بالا و جريان بالا كه سبب نقص و خرابي تجهيزات الكتريكي مي شوند ، گردد.بنا بر اين در هر دو تشديد موازي و سري خازنهاي قدرت متاثر هستند كه بكار گيري دستگاه هاي حفاظتي و ايمني را براي خازنها ايجاب مي نمايد. اين امر درك صحيح بر خازنهاي قدرت را قبل از از اعمال تصحيح بخاطر تاثير هارمونيك ها و تشديد ايجاب مي نمايد.
 
خازنهاي قدرت:

خازنهاي اصلاح ضريب توان نسبت به هارمونيك ها حساس اند و بيشتر عيوب خازنهاي قدرت ، عيوبي با طبيعت زير را نشان مي دهند :
هارمونيك ها – هارمونيك هاي پنجم ، هفتم ، يازدهم ، سيزدهم و ...
تشديد
اضافه ولتاژ
امواج كليد زني
جريان هجومي
ولتاژ آني بازگيري جرقه
تخليه / بازبست ولتاژ
 
بسته به طراحي ساختاري اساسي ، حدود پايداري در مقابل اضافه ولتاژ ، اضافه جريان و هارمونيكها براي دور كردن خازن از خرابي بسيار مهم است.
اساسا خازن ها امواج كليد زني توليد مي كنند كه عموما به عنوان جريان هجومي و اضافه ولتاژ آني دسته بندي مي شوند.
جريان هجومي پديده اي است كه هنگام به مدار وصل كردن خازن ها رخ مي دهد. امپدانس ارائه شده توسط خازن طبيعتا بسيار كم و مقاومتي است. اين امر منجر به جريان هجومي به بزرگي 50 تا 100 برابر جريان اسمي مي شود كه از خازن عبور مي كند ، اما چرا از خازن؟ زيرا امپدانس ترانسفورماتور در زمان روشن كردن خازن ها فقط در مقابل شار جريان مقاومت مي كند.
اين امر هنگامي پيچيده تر مي گردد كه در تركيب موازي بانك خازني ممكن است جريان هجومي كليد زني به سطحي بالاتر از 200 تا 300 برابر جريان اسمي برسد. اين جريان هجومي نتيجه تخليه خازن هاي از پيش شارژ شده موازي با آن مي باشد. در زير اين مطلب نشان داده شده است.نوعا جريان هجومي علاوه بر تخريب در شكل موج جريان سبب تخريب در شكل موج ولتاژ مي شود.
 
 
در هنگام خاموش كردن (از مدار خارج كردن) خازن ها ، بسته به شارژ ذخيره شده در آن ، اضافه ولتاژ ناگهاني بالاتري در زمان خاموش كردن خازن ها بوجود خواهد آمد كه ممكن است موجب پديد آمدن جرقه در پايه ها شود.
هنگامي كه خازن خاموش مي شود شار الكتريكي در خود نگه مي دارد و بوسيله مقاومتهاي تخليه ، تخليه (Discharge) مي شود. مدت زمان تخليه عموما بين 30 تا 60 ثانيه مي باشد. تا زماني كه تخليه بشكل موثري صورت نگرفته نمي توان خازنها را به مدار باز گرداند. هرگونه بازبست خازن قبل از تخليه كامل دوباره موجب افزايش جريان هجومي مي شود.
 
علاوه بر دستگاه هاي مسدود كننده هارمونيك ها كه با صحت خازن ها نسبت مستقيم دارند ، و در سر خط بعدي تشريح مي شوند ، دستگاه هاي تحليل برنده امواج كليد زني مثل جريان هجومي ، اضافه ولتاژ آني و غيره نياز دارند كه بطور دقيق تعريف و بررسي شوند.
 
دستگاه هاي مسدود كننده هارمونيك ها:
براي كاربري سالم خازن ها لازم است كه فركانس تشديد مدار LC (سلف – خازن) كه شامل ادوكتانس بار و خازنهاي اصلاح ضريب توان مي شود ، به فركانسي دور از كمترين فركانس هارمونيك تغيير داده شود. براي مثال هارمونيك هايي كه در سامانه توليد مي شوند و خازن هاي قدرت را متاثر مي سازند ، هارمونيك هاي پنجم ، هفتم ، يازدهم ، سيزدهم و غيره هستند. پايين ترين هارمونيكي كه بر خازن ها تاثير مي گذارد هارمونيك پنجم است كه در فركانس 250 هرتز ديده مي شود. اساسا اگر خازن ها با سلف ها موازي شده باشند ، انتخاب مقدار اندوكتانس به شكل زير است :
تركيب سري LC (سلف – خازن) در فركانسي زير 250هرتز تشديد مي كند . بنابراين در همه فركانس هاي هارمونيك ها تركيب سري سلف و خازن مانند يك تركيب سلفي عمل خواهد كرد و امكان تشديد براي هارمونيك پنجم يا هر هارمونيك بالاتري از بين مي رود. شكل زير ناميزان سازي (De – Tuning) خازن ها را نشان مي دهد.
 
 
اين تركيب سلف و خازن كه در آن فركانس تشديد در فركانسي دور از فركانس هارمونيك تنظيم شده است ، مدار LC (سلف – خازن) ناميزان شده
(De-Tuned) نام دارد. ضريب نا ميزان سازي نسبت رآكتنس به طرفيت خازني است. در مدار خازني ناميزان شده ، اساسا سلف مانند دستگاه مسدود كننده هارمونيك ها عمل مي كند. براي خازن ها ضريب مناسب ناميزان سازي حدود % 7 است كه فركانس تشديد را در 189 هرتز تنظيم مي كند.
اما ، ناميزان سازي % 5.67 همچنين در جايي استفاده مي شود كه فركانس تشديدي معادل 210 هرتز دارد . هر دو درجه ناميزان سازي ، مسدود كردن (بلوكه كردن) هارمونيك ها از خازن ها را تضمين مي كنند. شكل زير درجه ناميزان سازي را نمايش مي دهد.

 
 
 بانك هاي ناميزان سازي خازن:
بانك هاي ناميزان سازي خازن نيازمند آن هستندكه با نكات اساسي زير مشخص شوند :
انتخاب درجه ناميزان سازي
محاسبه خازن كل خروجي مورد نياز
محاسبه افزايش ولتاژ بوسيله سلف هاي سري
درجه ناميزان سازي مطلوب بر پايه هارمونيك موجود است. لازم است كه هارمونيك هاي سمت بار اندازه گيري شوند تا در درجه ناميزان تصميم گيري شود.
*
خروجي خازن و سطح ولتاژ نياز به انتخاب صحيح بر اساس درجه ناميزان سازي دارند. براي مثال براي %7 ناميزان سازي براي رسيدن به 200 كيلو ولت آمپر رآكتيو خروجي (KVAR) در 400 ولت ، نياز به آن داريم كه خازن 240 KVAR خروجي با ولتاژ 400 ولت انتخاب نماييم. اين بدليل افزايش ولتاژ بوسيله اندوكتانس سري است. مشابها براي رسيدن به 200 KVAR خروجي در ولتاژ 440 ولت به خازن هاي 240 KVAR خروجي 480 ولتي نياز است.
محاسبه افزايش ولتاژ به سبب رآكتنس سري ، بر اساس ناميزان سازي است و به روش زير انجام مي گيرد :
( درجه ناميزان سازي – 1) / (ولتاژ نرمال مجاز) = ولتاژ خازن
 سامانه خازني ايده آل:
براي تصحيح ضريب توان در بار صنعتي كنوني كه شامل هارمونيك ها و تشديد مي شود ، يك سامانه اتصال خازني اساسا بايد خصوصيات زير را دارا باشد :
ظرفيت خازني متغير بر اساس توان رآكتيو براي دوري از تغيير فركانس تشديد. اين امر انتخاب صحيح پنل هاي APFC را ممكن مي سازد. پنل APFC بايد خصوصيات زير را داشته باشد.
حسگرها بايد به طور مداوم سطح هارمونيك هاي ولتاژ را نمايش دهد و خازن ها را تحت زير سطوح بالاتر هارمونيك ها محافظت نمايد.
انتخاب محدوده هارمونيك هاي پنجم ، هفتم ، يازدهم ، سيزدهم و همچنين شناخت تخريب همه هارمونيك ها براي تنظيم حدود ايمن و همچنين پيش بيني تغييرات بعدي هارمونيك ها.
مونيتورينگ جريان RMS براي محافظت خازن ها تحت هر حالت تشديد.
كنترل مشخصات ، براي دوري از بكارگيري ظرفيت مازاد خازني تحت حالت كم بار.
انتخاب خازن با عمر بالا و با تضمين مشخصات زير :
ظرفيت اضافه بار : حداقل دو برابر جريان اسمي به طور مداوم و 350 برابر آن هنگام جريان هجومي.
قابليت پايداري در مقابل اضافه ولتاژ :بيشتر از %10 و بالاتر از ولتاژ مجاز بصورت پيوسته.
قابليت پايداري در مقابل هارمونيك ها : تضمين محدوده هاي هارمونيك هاي پنجم ، هفتم ، يازدهم ، سيزدهم و همچنين براي محدوده هاي THD.
مدار سلفي De – Tuned براي مسدود كردن هارمونيك ها (الگوي هارمونيك بار بايد قبل از تعيين درجه ناميزان سازي (De – Tuning) اندازه گيري شود).
انتخاب سطح خازن و سطح ولتاژ براساس درجه ناميزان سازي.
دستگاه هاي كليدزني با تقليل دهنده هاي داخلي براي تقليل امواج كليد زني براي خازن هاي قدرت.
اساسا اين خصوصيات با مطالعه متناسب هارمونيك هاي ولتاژ بار همراه است كه تضمين مي كند كه تاثير مخرب هارمونيك ها و تشديد از خازن ها دور شود كه بدين وسيله عمر خازن ها و كارايي كل سامانه الكتريكي را افزايش مي دهد.
 نتيجه گيري
علم به شرايط و خصوصيات خازن ها و عوامل موثر بر آنها از جمله هارمونيك ها نه تنها موجب افزايش امنيت و سلامتي و طول عمر آنها خواهد شد بلكه سبب كاهش هزينه هاي پيش بيني شده و نشده در بكار گيري انرژي الكتريكي مي شود.

نام 100 نابغه برتر جهان به سند دیلی تلگراف

اگر از شما نام چند نابغه را در جهان بپرسند احتمالا خواهید گفت: انیشتین، نیوتن، ادیسون و... اما اگر به شما بگویند که نام چند نابغه‌ی زنده‌ی دنیا را بگو چه خواهید گفت؟
احتمالا تاکنون اسم «دیلی تلگراف» را شنیده‌اید. یک روزنامه‌ی معتبر و پر تیراژ انلگیسی است. این روزنامه دست به کار جالبی زده و از 4000 چهره‌ی مطرح علمی و فرهنگی خواست تا 10 نابغه‌ی خود را بگویند و از آمار به دست آمده نزدیک 40 درصد از آن‌ها مرده بودند. در نظرسنجی دوم از آن‌ها خواست که بین 60 درصد باقی‌مانده ده نفر را انتخاب کنند. این نظر سنجی با پنج معیار 1- اعتبار فرهنگی 2- موفقیت 3- شهرت 4- توانایی ذهنی 5- قابلیت مواجهه با مسائل نامتعارف برگزار شد. نتیجه‌ی آن فهرست «100 نابغه‌ی زنده» شد.
البته باید گفت که نبوغ چیزی نیست که بشود آن را اندازه گرفت یا به آن جواب دقیقی داد (این فهرست یکی از هزاران فهرست است که امکان تهیه‌ی آن وجود دارد!) نخست به ده نابغه‌ی اول اشاره می‌کنم. که مطمئنا نصف آن‌ها را نمی‌شناسید.
1- آلبرت هافمن: نابغه‌ترین موجود کره‌ی خاکی! پیرترین شخص از این صد نفر با سن 101 سال! شیمی‌دان سوییسی که یکی از معروف‌ترین کارهایش LSD‌ است.
2- تیم برنرز- لی: مهم‌ترین کار این شخص «www»ی پُر استفاده است. 52 ساله، انگلیسی، دانشمند علوم کامپیوتر.
3- جورج سوروس: سرمایه‌دار 72 ساله‌ی آمریکایی با ثروتی حدود 5/8 میلیارد دلار!
4- مت گرونینگ: یک انیماتور به تمام معنا. شاهکار او «سیمپسون‌ها» است که پارسال خیلی ترکاند!
5- نلسون ماندلا: خیلی نیازی به توضیح ندارد. دارد؟
6- فردیک سنگر: شیمیدان انگلیسی برنده‌ی دو جایزه‌ی نوبل در رشته‌ی خود.
7- داریو فر: باز هم یک برنده‌ی دیگر نوبل در سال 97. این بار در ادبیات. یک طنزنویس تمام عیار ایتالیایی.
8- استیون هاوکینگ: خیلی از شما انتظار داشتید جزء دو نفر اول باشد، نه؟ اما مطمئن باشید که این انگلیسی اگر معلول نبود، در دنیا این قدر سر و صدا راه نمی‌انداخت. البته نبوغش را نمی‌شود منکر شد.
9- اسکار نیه‌مه‌یر: دومین پیر این لیست. برزیلی 100 ساله که با اختراعاتی چون بتون مسلح خود را یک معمار کامل معرفی کرد.
10- فیلیپ گلس: آهنگساز آمریکایی که سه بار نامزد جایزه‌ی اسکار شد. بعضی‌ها او را تاثیرگذارترین آهنگساز قرن بیستم می‌خوانند!
* از این به بعد فقط به چهره‌های آشنا می‌پردازیم.
12- دکتر علی جوان: بله! درست است. یک ایرانی در بین سه ایرانی این 100 نفر. او شاگرد دکتر حسابی بوده. از دبیرستان البرز و دانشگاه تهران فارغ‌التحصیل شده و به همراه آقای yoang (حواستان به تشابه اسمی باشد) لیزر گازی را اختراع کرده. در دانشگاه MIT تدریس کرده و در بین این صد نفر با «اندرو وایلز» که قضیه‌ی فرما را حل کرده هم ردیف است. بالاترین نشان افتخار انجمن اپتیک آمریکا و جایزه‌ی جهانی آلبرت انیشتین را برده! کافی است یا باز بگویم؟
20- لری پیج و سرگئی برین: این‌ها را می‌توانید یک نفر حساب کنید! یکی روس و دیگری آمریکایی است و مهم‌ترین کار این دو نابغه، اختراع گوگل است که جهان را مسخره‌ی خودش کرده. این دو به تازگی درگیر تغییر نام خلیج‌فارس به خلیج عربی در google Earth هستند.
25- گری کاسپاروف: به نظر من رتبه‌ی این شطرنج‌باز نهایت بی‌انصافی است. او توانست در سه دوره ی ده تایی، Deep Blue (ابر کامپیوتر IBM را که در هر ثانیه 000/000/100 حرکت حریف را پیش‌بینی می‌کرد، شکست دهد.) به تازگی هم وارد کارهایی سیاسی و مخالفت با پوتین شده!
26- استیون اسپلیبرگ: وقتی فیلم «نجات سرباز رایان» و «برخورد نزدیک از نوع سوم» وی را ببینید کاملا متوجه نبوغ اولین کارگردان این لیست می‌شوید.
32- نیما ارکانی حامد: این دومین ایرانی این لیست است. پدر و مادرش ایرانی هستند ولی خودش در کانادا به دنیا آمده. 35 سال دارد. استاد فیزیک هاروارد که هم‌اکنون روی نظریه‌ی ریسمان کار می‌کند.
43- محمدعلی کلی: انتخاب او خیلی عجیب بود. ولی خوب، چندین سال قهرمان بوکس حرفه‌ای سنگین وزن آمریکا بودن و مسلمان شدن و امتناع از رفتن به جنگ ویتنام چیز کمی نیست.
43- اسامه بن‌لادن: بالاخره نابغه هم شد! کسی که اسمش امریکا و اروپا را می‌لرزاند!
43- بیل گیتس: این هم خیلی نیاز به توضیح ندارد.
43- میخائیل کلاشنیکف: ما به اشتباه او را به کلاشنیکف می‌شناسیم.
49- پردیس ثابتی: این هم سومین ایرانی، زیست‌شناس و انسان‌شناس. لیسانس را از MIT گرفته. او جزو سه زنی است که تاکنون با نمره‌ی ممتاز مدرک دکترای خود را از مدرسه پزشکی هاروارد گرفته. 32 سال دارد. گیتار می‌زند. هم‌خوان گروه آلترناتیو راک به نام «هزار روز» هم هست. الگوریتم او هنوز هم کاربرد دارد.
49- مریل استریپ: تنها بازیگر این لیست. 14 بار کاندید اسکار شده. و دو بار هم آن را گرفته. پرافتخارترین زن هالیوود است. او تا این سن (58 سالگی) درهیچ یک از فیلم‌هایش از ظاهر زنانه‌اش برای جذب مردم استفاده نکرده است.
58- استیفن کینگ: فیلم‌نامه نویس فیلم «درخشش» کوبریک و «مسیر سبز» دارابونت.
72- جورج لوکاس: دومین کارگردان این لیست. جنگ‌های ستاره‌ای او هنوز در فهرست بهترین فیلم‌های جهان می‌درخشد.
72- جان ویلیامز: آهنگساز 75 ساله که موسیقی متن‌های فوق‌العاده و اسکار گرفته زیاد دارد. نمونه کارهای او، فهرست شیندلر، ای‌تی، آرواره‌ها و جنگ‌های ستاره‌ای است.
83- جی. کی رولینگ: او با هفت کتاب جادویی‌اش ثروتش را از ملکه‌ی انگلستان بیشتر کرده. او گفته قبل از انتشار کتاب اولش (از فقر) در خانه‌اش جاکفشی نداشته است.
100- کوئنتین تارانتینو: اولین فیلمش «سگدانی» است که جزو بهترین فیلم‌های تاریخ است. «پالپ فیکشن» و «بیل را بکش» او را هم از یاد نبریم.

ده اختراع برتر جهان که دنیا را متحول کرد

موزه علوم
لندن از 10 کشف و اختراع مهم که دنیای علم را تغییر دادند،
نگهداری میکند. دانستن اینکه چه چیزی تا به حال توانسته پیشرفت
و تغییری شگرف در علم به وجود آورد، بسیار هیجان انگیز است پس
این مطلب را از دست ندهید و به ادامه مطلب مراجعه کنید.
سفینه آپولو 10

آپولو 10 چهل سال پیش به عنوان یک نمونه آزمایشی برای اولین
بار با 3 سرنشین به سمت ماه سفر کرد و با اینکه موفقیت آمیز
نبود راه را برای آپوبو 11 باز کرد و آپولو 11 توانست به ماه
برسد.
آپولو 10 (به عنوان اولین سفینه ای که توانست از جو خارج شود)
راه را برای ما باز کرد، تا با عظمت دنیای بی انتها آشنا شویم.
موتور بخار

توماس نیوکامن در سال 1712 این موتور را اختراع کرد که این عکس
مدلی از این موتور است که فرانسیس تامسون در 1791 در داربی
شایر انگلستان ساخته است. این قدیمی ترین و سالمترین مدل از
اختراع نیوکامن است.
در واقع این موتور مشکل بحران انرژی این روزگار را حل کرده است
و اگر ساخته نمی‌شد مطمئناً بحران انرژی برای ما مشکلات بسیار
زیادتری بوجود می‌آورد.
اگرچه نمی‌توان کاملاً این اختراع را به راه حل بحران انرژی
تشبیه کرد، اما استفاده از سوخت های فسیلی تا قبل از این
اختراع آقای نیوکامن تقریباً غیر ممکن بود.
تلگراف

تلگراف به عنوان اولین وسیله ی ارتباطی
الکترونیکی در سال 1837 توسط چالز واتسون و ویلیام کوک ساخته
شد که از مهمترین اختراعات بشر در زمینه ی ارتباطات است.
دستگاه تلگراف آنها به عنوان اولین و کاربردی ترین وسیله ی
ارتباط دوربرد الکترونیکی شناخته شده و ایده ی شبکه های گسترده
از این اختراع الهام گرفته است.
فورد مدل T

با دیدن این تیتر و عکس حتماً فکر
میکنید این کمپانی فورد بود که اولین اتومبیل را ساخته؛ اما
باید بدانید در واقع مدل T اولین اتوموبیلی بود که به تولید
انبوه رسید و این خدمت فورد به جامعه ی بشری بود:
خط تولید
بله، خط تولید فورد، به عنوان اولین سیستم تولید انبوه در
دنیا، انقلابی در صنعت و اقتصاد ایجاد کرد که امروز همه ی ما
شاهد آن هستیم و باید خط تولید را مهمترین اتفاق در قرن گذشته
دانست
Pilot ACE Computer

یکی از نخستین کامپیوتر های
جهان. ایده ی آقای جان وامر-اسلِی یعنی موتور محاسبه اتوماتیک
(Automatic Computing Engin - ACE)، که وی در سال 1936 داده
بود، برای اولین بار و موقفیت آمیز در دهم ماه مِی 1950بر روی
کامپیوتری که آلن تورینگ عملیات ساخت آنرا انجام داد، آزمایش
شد.
این کامپیوتر در زمان خود پیشرفته ترین و سریعترین کامپیوتر در
جهان بود که نمونه ی کوچکتری از مدل اولیه ی آلن تورینگ بود.
پایلوت اِیس هم در لیست مهمترین اختراعات بشر است، چرا که
اولین نسل از کامپیوترهایی است که امروز ما را احاطه کرده اند.
موتور موشک V2

موشک V2 که وارنر وان بارون
در سال 1942 آنرا ساخت در واقع اولین موشک دور برد بود که
انقلابی در تکنولوژی موتور موشک به وجود آورد. اگرچه این موشک
متأسفانه در جنگ جهانی دوم تلفات بسیاری به بار آورد و بعداً
هم راه را برای ساخت موشک های بالستیک باز کرد، اما یادمان
باشد همین آقای وان بارون با ایده موتور موشکش آپولو 11 را به
ماه رساند و موتور موشک او همچنان مورد استفاده قرار میگیرد
پنی سیلین

پنی سیلین، اولین آنتی
بیوتیک کشف شده در دنیا بود که الکساندر فلمینگ در سال 1928 آن
را از هاگهای جمع شده ی قارچ (یا همان کپک) کشف کرد.
اما تقریباً تا اواسط دهه 1940 که بر روی بیماران آزمایش نشده
بود کسی نمی دانست پنیسیلین بهترین دارو برای بیماری های عفونی
است. با کشف پنی سیلین میلیون ها بیمار و مجروح جنگی از مرگ
حتمی نجات پیدا کردند. و از آن موقع به بعد پنیسیلین به عنوان
اولین و عمومی ترین دارو برای بیماریهای باکتریایی و عفونی
تجویز و مصرف شد و بعد از آن بقیه آنتی بیوتیک ها وارد دنیای
پزشکی شدند
رشته
های مارپیچ DNA

اولین بار DNA توسط آقایان
کریک و واتسون در سال 1953 مورد توجه قرار گرفت.
آنها حین آزمایشات خود روی ژن های انسانی با یک ساختار از
موادی که مولکولهای این ژن ها را تشکیل میدهند روبرو شدند و با
شکافتن آنها راز نظم حاکم بر سلولهای بدن را کشف کردند.
DNA، امروزه موضوع مهمی در علم، صنعت و حتی مسائل امنیتی محسوب
میشود و هنوز هم مطالعات زیادی در سطح جهان روی آن انجام میشود
اشعه ایکس

برای اولین بار فیزیکدان
آلمانی، ویلیام رونتگن در سال 1895 امواج ایکس را کشف کرد که
امروزه بیشتر برای عکسبرداری از اعضای داخلی بدن استفاده
میشود. فکرش را بکنید که اگر اشعه ایکس کشف نشده و اینطور به
خدمت بشریت در نیامده بود باید برای تعیین محل دقیق شکستگی چه
میکردند!!؟
لوکوموتیو

آخرین اختراعی که سایت
نیوساینتیست در این لیست قرار داده لوکوموتیو بخار است. در
سال 1829 رابرت استفان سون لوکوموتیو بخارش را (که اول آنرا
راکت استفان سون نامیده بود)، برای اولین بار در نیوکاسل
انگلستان آزمایش کرد و برای اولین بار بالاترین سرعت در یک
وسیله ی نقلیه که نیروی محرکه اش را به همراه دارد، ثبت کرد. شاید
خود استفان سون هم فکر نمی‌کرد این وسیله تا 150 سال بعد از آن
سال هم در سطح جهان برای حمل و نقل مورد استفاده قرار بگیرد،
اما همچنان از لوکوموتیو برای حمل و نقل استفاده می‌شود با این
تفاوت که این وسیله بسیار پیشرفت کرده است. این
اختراعات و اکتشافات مهمترین اکتشافاتی بودند که به واقع دنیا
را متحول کردند و علاوه بر کمک به بشریت، راه را برای
پیشرفتهای بعدی هموار کردند. اگر گذارتان به لندن افتاد و یا
در آنجا هستید حتماً از این افتخارات بشری در موزه ی علوم لندن
بازدید کنید.

آخرین دستاوردهای هوش مصنوعی

 

ستاره سمائی: دانشمندان در حال آموزش روبات‌ها برای کشف سیارات ماورای زمین، درست کردن چای و قهوه برای شما هستند و خودروها سعی دارند یاد بگیرند که خودشان خود را برانند، رایانه‌ها تلاش می‌کنند برای تشخیص بیماری به پزشکان کمک کنند و سربازان بازی‌های ویدئویی برای شرکت در صحنه‌های مجازی جنگ تعلیم می‌بینند.

1. روبات باهوش
شاید اسمش را ندانید اما احتمالا درباره روبات انسان‌نمای آسیمو ساخته شرکت هوندا که اولین بار در سال 2000 رونمایی شده، شنیده‌اید. ASIMO مخفف عبارت Advanced Step in Innovative Mobility به معنی «گامی پیشرفته در تحرک ابتکاری» است. این روبات با قد 130 سانتی‌متر و وزن تقریبی 54 کیلوگرم، مجهز به باتری با عمر یک ساعت است و می‌تواند با سرعت 6 کیلومتر در ساعت بدود.
البته تاثیرگذارترین ویژگی‌های آسیمو، توانایی‌های این روبات در زمینه هوش مصنوعی است که اولین بار در سال 2005 رونمایی و در سال 2007 پیشرفته‌تر شد. آسیمو می‌تواند اجسام متحرک را تشخیص دهد که همین قابلیت به او امکان می‌دهد اجسام متحرک را دنبال کرده، با مردم روبرو شده و ارتباط برقرار کند، در اطراف اجسام ساکن حرکت کرده و با افراد یا اشیاء متحرکی که در مسیرش قرار دارند، تصادف نکند! او می‌تواند به جهتی که کاربرش نشان می‌دهد، حرکت کند. اگر شما دست‌تان را به سمت او دراز کنید، او هم دستش را برای سلام و احوال‌پرسی جلو می‌آورد!
آسیمو همچنین به فناوری شناسایی چهره‌ها مجهز است که به او امکان می‌دهد افراد را بشناسد و آن‌ها را به اسم صدا کند. این روبات حتی می‌تواند برای افرادی که سر میز نشسته‌اند، قهوه ببرد. در نهایت، گروهی از روبات‌های آسیمو می‌توانند کارهای گروهی را در کنار هم انجام دهند. آسیمو هنوز در حال تکمیل شدن است و جای پیشرفت زیادی دارد اما هوندا امیدوار است روزی روباتی تولید کند که بتواند از پس تمام کارهای روزمره افراد برآید.

2. وال‌ای (WALL-E) روی مریخ!
مریخ شاید پناهگاه خوبی برای چرخه حیات هوشمندانه نباشد، اما این سیاره سرخ نشانه‌هایی از هوش مصنوعی در خود دارد.
دانشمندان ناسا در سال 2010 یک کپی از نرم‌افزار هوش مصنوعی را به مریخ، تنها سیاره زیست‌پذیر غیر از زمین ارسال کردند. آپورتونیتی، روبات مریخ‌نوردی است که مشغول اکتشاف سطح این سیاره است و در حال حاضر توانایی تصمیم‌گیری دارد و می‌تواند برای تحلیل سنگ‌هایی که با معیارهای از پیش تعیین‌شده (مثل رنگ و شکل) مطابقت دارد، توقف کند. این نرم‌افزار که «ایگیس» (AEGIS مخفف عبارت Autonomous Exploration for Gathering Increased Science به معنی اکتشاف خودگردان برای گردآوری علوم توسعه‌یافته) نامیده می‌شود، از سال 2004 در حال توسعه بود. ناسا امیدوار است در آینده برای ماموریت‌های فضایی از ایگیس استفاده کند.

3. واتسون در پزشکی
ابررایانه واتسون با شکست دو انسان در مسابقه جئوپاردی، باعث حیرت همه شد. حالا هم که مسابقه تمام شده، چیزی از فعالیت واتسون کم نشده است! قرار است از فناوری این ابررایانه به عنوان موتور تحلیل داده‌ها برای بررسی اطلاعات پزشکی و انتخاب بهترین روش درمان بیماری استفاده شود. آی‌بی‌ام در حال حاضر مشغول افزودن فناوری‌های ظریفی مثل تشخیص صدا به این سیستم است و امیدوار است این ویژگی کاربردی را نهایتا تا سال 2012 عرضه کند. در حال حاضر برای آزمایش توانایی‌های واتسون در زمینه‌های پزشکی، آی‌بی‌ام همکاری خود را با دو دانشگاه مریلند و مرکز پزشکی دانشگاه کلمبیا آغاز کرده است.

4. نل (NELL)
محققان دانشگاه کارنگی‌مِلوِن در ایالت پنسیلوانیا امیدوارند بتوانند به رایانه‌ای آموزش دهند که از طریق «مطالعه» وب، بتواند دنیا را بشناسد. رایانه «نل» (NELL مخفف Never-Ending Language Learner به معنی یادگیرنده نامحدود زبان) رایانه‌ای است که از ژانویه 2010 / دی 1388 بی‌وقفه مشغول فعالیت است و پایگاه داده‌هایی با بیش از 500هزار واقعیت علمی تهیه کرده است. ایده اولیه این بود که این رایانه هر روز در دنیای مجازی وب بگردد و دلایل و برهان‌ها را از متون، استخراج کند. برای این کار، این رایانه صفحات وب را تحلیل کرده و توضیحاتی را که به نظرش واقعا درست می‌آیند، خارج می‌کند؛ توضیحاتی مثل: «مانیل، پایتخت کشور فیلیپین است». بعد این اطلاعات را به پایگاه داده‌هایش اضافه می‌کند تا روز بعد بتواند با قوه ادراک بیشتری به دنیای مجازی برگردد.
نل با اتصال به سرور «دل R710» فعال شده که مجهز به دو پردازشگر چهار هسته‌ای 2.67 گیگا‌هرتزی مدل زئون 5550 است. البته به گفته برایان کیسل از برنامه‌نویسان گروه تحقیقاتی نل، این نرم‌افزار بر روی پردازشگری تک هسته‌ای با رم 8 گیگا‌بایتی و دیسکی با فضای خالی 100 گیگا‌بایت هم قابل اجراست. البته نل به گروهی از ابررایانه‌ها متصل است تا آنها اطلاعات گردآوردی‌شده روزانه را پردازش و تصحیح کنند.

محققان موسسه ملی تکولوژی لوزان در سوئیس، به فناوری جدیدی برای صندلی‌های چرخ‌دار مخصوص معلولان حرکتی دست یافته‌اند که «کنترل اشتراکی» نامیده می‌شود. در این فناوری که از هوش مصنوعی بهره گرفته، بیمار می‌تواند تنها از طریق فکرش، صندلی چرخ‌دار را هدایت کند. برای استفاده از این فناوری کافی است بیمار کلاهی را بر سرش بگذارد که امواج مغزش را به صورت «فرمان» به صندلی چرخ‌دار ارسال می‌کند و امکان حرکت به هر جهتی را برای فرد ایجاد می‌کند. البته استفاده از این فناوری باعث خستگی ذهنی می‌شود و ممکن است با غوطه‌ور شدن فرد در افکارش، ناگهان از وسط جاده سر در آورد! برای گذر از این محدودیت، این صندلی چرخ‌دار مجهز به هوش مصنوعی است - و همین‌جاست که پای اشتراک کنترل به میان می‌آید- تا مراقب جزئیات مورد اشاره باشد؛ مثلا سرعت یا جهت معینی را حفظ کند. هوش مصنوعی این صندلی مانع از برخورد کاربر به اجسام ساکن می‌شود اما کاربر می‌تواند با لغو این فرمان، به یک میز، پیشخوان یا دیگر اشیاء ساکن دسترسی پیدا کند.

6. سوارکار قهرمان
خودروهای بی‌راننده هنوز در حد نمونه‌های آزمایشگاهی مانده‌اند، با این حال این خودروها خیلی خوب از هوش مصنوعی برای جهت‌یابی و پیش‌روی در جاده استفاده می‌کنند. در اکتبر 2010 / مهر 1389، وقتی خبر مسافرت 226هزار کیلومتری خودروی بی‌راننده در جاده‌های کالیفرنیا علنی شد، گوگل اخبار زیادی از این ماجرا تهیه کرد. این خودروها با ترکیبی از دوربین‌های ویدئویی، حس‌گرهای ردیاب، مسافت‌یاب لیزری و هوش مصنوعی، توانست مسیر جاده را دنبال کند.
در سال 2007 تیم مسابقه خودروی مستقل دانشگاه استنفورد توانست مقام دوم رقابت بزرگ دارپا، آژانس پروژه‌های پیشرفته تحقیقاتی پنتاگون را از آن خود کند. در رقابت بزرگ 2007، قابلیت خودروهای بی‌راننده برای هدایت در شرایط شبیه‌سازی شده ترافیکی و انجام کارهایی مثل توقف، حرکت و گذر از چهارراه سنجیده شد. برنامه خودروی مستقل دانشگاه استنفورد همچنین توانست در رقابت دارپا 2005 نیز برنده شود: رقابتی که برای سنجش قابلیت خودروها در توانایی هدایت مسیر 213 کیلومتری بیابان بدون دخالت انسان برگزار شد.

7. تربیت ارتش روباتی
اگر می‌خواهید کمی با هوش مصنوعی سرگرم شوید، بازی نِرو (NERO) را امتحان کنید که توسط دانشکده علوم کامپیوتری دانشگاه تگزاس ساخته شده است.
در بازی نِرو شما باید ارتشی از روبات‌ها را تربیت کنید و آن‌را برای در دست گرفتن کنترل سیاره زمین‌مانند گلیس‌581سی که سرشار از منابع طبیعی است، اعزام کنید تا با ارتشی از روبات‌های بیگانه که توسط یک ماشین هوشمند کنترل می‌شوند، رقابت کنند. روبات‌های شما هیچ قابلیت و مهارت ذاتی ندارند، بنابراین تربیت و آموزش آن‌ها ضروری است؛ همان‌طور که شما این روبات‌های مجازی را آموزش می‌دهید، مهارت‌های آن‌ها افزایش یافته، قابلیت‌های بیشتری کسب می‌کنند و ارتش شما بیشتر برای جنگ و رقابت آماده می‌شود. سربازان شما نمی‌توانند در میدان جنگ موارد جدیدی بیاموزند و تنها در تمرین‌های آمادگی قابلیت یادگیری دارند.

8. شما تحت نظرید!
ویتامینD، یک شرکت امنیت تصویری کالیفرنیایی است که از فناوری هوشمند برای سنجش تصاویری که دوربین‌های امنیتی از افراد و اجسام متحرک ضبط کرده، استفاده می‌کند. نرم‌افزار این شرکت، داده‌های امنیتی مشخص روزانه را به صورت برگزیده‌ای از تصاویر ضبط شده اجسام متحرک درمی‌آورد و به این ترتیب لازم نیست فرد، برای کنترل حرکات مشکوک، زمان زیادی را برای بازبینی فیلم‌های ضبط شده صرف کند.
ویتامین D در مورد این فناوری اعلام کرده که این برنامه برای نادیده گرفتن حرکات بی‌اهمیت مثل حرکت شاخه‌های درخت در باد و ... طراحی شده است. این فناوری امنیتی بر پایه نوعی از هوش مصنوعی به نام HTM (حافظه موقتی مرتبه‌ای) طراحی شده و بر اساس نئو کورتکس (قشر تازه مخ) انسان مدل‌سازی شده؛ اما به جای واکنش به برنامه‌نویسی قانون‌محور (مثل سایر نرم‌افزارهای معمولی) به حجم وسیعی از داده‌ها نیاز دارد.
بعد از تامین خوراک این برنامه، HTM می‌تواند الگوهایی مثل حرکت انسان در قاب تصویر را پیدا کند و در پاسخ، یاد می‌گیرد کاری را که شما از او می‌خواهید، انجام دهد.

9. نتایج مجازی
شرکت «سیمولکس» فناوری بازی را با هوش مصنوعی ادغام کرده تا عکس‌العمل مجازی دنیا را در مقابل بلایای طبیعی، جنگ‌ها و تصمیم‌های تجاری برآورد کند؛ این عکس‌العمل‌های مجازی می‌تواند در پیش‌بینی نتایج احتمالی وقایع مختلف بر دنیا موثر باشد.
برنامه سیمولکس، بر پایه پروژه پیشرفته دانشگاه پوردو و وزارت دفاع آمریکا بنا شده که به SEAS (مخفف عبارت «محیط ترکیبی برای تحلیل و شبیه‌سازی») معروف است. این برنامه به شما اجازه می‌دهد تا بر جمعیتی با هوش مصنوعی در دنیایی مجازی تاثیر متقابل داشته باشید. سیمولکس مثلا برای کمک به پیاده‌سازی یک شیوه جدید برای پیش‌روی ارتش ایالات متحده در یک جنگ مجازی از SEAS استفاده می‌کند.
همچنین تاکنون از SEAS برای برنامه‌ریزی عکس‌العمل‌های اضطراری در مقابل حمله‌های تروریستی و نیز بهبود سیستم کنترل ترافیک هوایی استفاده شده است.

10. خودروی مغزی!
در مورد صندلی چرخ‌داری که توسط مغز کنترل می‌شود، قبلا صحبت کردیم؛ اما حالا در مورد خودرویی بخوانید که توسط مغز کنترل می‌شود و می‌تواند به عبارت «رانندگی بدون دخالت دست» مفهومی واقعی ببخشد!
درست مثل صندلی چرخ‌داری که با مغز هدایت می‌شود، این خودرو هم برای بهره‌گیری از هدایت مغز به نوعی خاصی از گوشی سر احتیاج دارد؛ این گوشی مجهز به 16 حسگر برای سنجش امواج الکترومغناطیسی مغز انسان و تبدیل این امواج به فرمان‌های رانندگی است. لازمه آموزش خودرو برای شناسایی فرمان‌های کاربر، این است که فرد قبل از سوار شدن بر خودرو، چندین جلسه را با رایانه بگذراند.
البته این خودرو هنوز به واقعیت کامل تبدیل نشده و دارای محدودیت‌های عملکردی است و تنها می‌تواند برخی فرمان‌های اولیه مثل پیچیدن، سرعت گرفتن و کاهش سرعت را انجام دهد. بعد از پاسخگویی به یک فرمان مغزی مثل «پیچیدن به راست» خودروی مستقل تا دریافت فرمان بعدی انسان، به راه خود ادامه می‌دهد. این خودرو با تاخیر زمانی کمی به فرمان کاربرش پاسخ می‌دهد بنابراین در مواقع اضطراری نمی‌تواند سریعا ترمز گرفته و متوقف شود.
این پروژه توسط بخشی از گروه هوش مصنوعی دانشگاه فرِی برلین در آزمایشگاه AutoNOMOS، انجام شده است.

هوش مصنوعی:

به زبان بسیار ساده هوش مصنوعی تلاش برای تولید ماشینی است که همانند انسان عمل کند.   

AI یک رشته جدیدی است که در اواسط قرن 20 بوجود آمده است. اکثرا در روزنامه ها، تلویزیون، فیلمها و بازی های کامپوتری به این مقوله پرداخته شده اما درست درک نشده است. حتی بعضی ساده لوحان این طرح را غیر عملی میدانند و بعضی از دولتها هرگونه فعالیت در این زمینه را ممنوع کرده اند. اما این علم در صنعت و دانشگاهها در حال پیشرفت است اگرچه همیشه بعنوان هوش مصنوعی شناخته نمی شود، زیرا تکنیکها و ایده های مهمی از مهندسی نرم افزار را در خود دارد. بعضی دیگر از ساده لوحان نیز فکر می کنند که این علم در حال رشد سریعی است و در چند سال آینده رباتها انسانها را به زنجیر میکشند و دنیا را در اختیار خود میگیرند.

متاسفانه هیچ توضیح و یا اشاره ای ازAI در مدارس و حتی دانشگاها داده نمیشود و تعداد معدودی از دانشگاها هستند که رشته و یا درس AI را در برنامه درسی خود قرار داده  اند.                                 

 AI یک علم بسیار عمیق و پیچیده در قرن اخیر است که در حالت کلی به مطالعه بر روی اطلاعات، چگونگی جمع آوری و نگهداری از آنها، بکارگیری اطلاعات و جابجایی و انتقال آنها به ماشین و یا انسان و حیوان میپردازد.

در فیزیک و شیمی بر اساس قانون اصل بقای انرژی، انرژی از بین نمیرود و فقط از صورتی بصورت دیگری در می آید. بسیاری از علوم مانند بیولوژی، داروسازی، زمین شناسی و دانشهای مهندسی براساس این اصل تکامل یافته است و تمامی این رشته ها بر اساس درک صحیحی از مکانیزم طبیعی و یا مصنوعی تبدیل نیرو، جرم و انرژی استوار است. در مورد اطلاعات نیز این اصل استوار است که اطلاعات انتقال می یابد و از صورتی بصورت دیگر در می آید.

به همین دلیل میتوان این علم را علم اطلاعات و یا علم هوش نامگداری کرد. علمی که بر اساس اصل تبدیل اطلاعات به فرم مکانیکی و شیمیایی و بالعکس استوار است.

نه تنها سیستمهای مصنوعی بلکه انسانها نیز اطلاعات را دریافت میکنند، بکار میگیرند و انتقال می دهند. انسانها حتی با اینها کنترل میشوند. برای مثال با جایزه خوشحال، با خبر بد غمگین، از صدای بلند در تاریکی هراسناک میشوند یعنی با دریافت یکسری اطلاعات از خود احساس نشان میدهند. این مورد نیز در در حال بررسی و مطالعه است. بنابراین AI برخلاف ظاهر اسمش، درباره سیستمهای طبیعی و مصنوعی تجزیه و تحلیل اطلاعات و نه فقط چگونگی دریافت اطلاعات بلکه چه میکنند و چگ.نه احساس میکنند، میباشد.

● AIزمینه های پژوهشی دیگری را نیز شامل میشود

اگر ما AI را بدین صورت تعبیر کنیم که علمی است که به چگونگی دریافت، پردازش، نگهداری و استفاده اطلاعات در هوش انسان و حیوان و ماشین باشد، بطور حتم با زمینه های پژوهشی قدیمیتری مانند روانشناسی، اعصاب و روان، فلسفه و منطق نیز در ارتباط هستیم.

پیشرفت کامپیوترها راههای جدیدی برای حل مشکلات AIدر برابر ما گشوده است. در گذشته روانشناسان و دانشمندان مغز و اعصاب نمیتوانستند سیستمهای پردازش اطلاعات حیوانات و آدمی را آزمایش کنند و فلاسفه فقط میتوانستند تیوریهایی در زمینه چگونگی کارکرد مغز و زبان بدهند. حال آنکه امروزه میتوان فراتر از آنها رفت و سیستمهایی طراحی نمود که تیوریها را مورد آزمایش قرار دهد و صحت و سقم آنها را یافت.

● تجربه های بدست آمده

طراحی ماشین با توانایی های خاص خیلی سخت تر از فرضیات اولیه دانشمندان است. خیلی کارها که در ابتدا ساده بنظر می رسند، موارد دقیق و عمیقی در خود دارند. برای مثال "دیدن" فقط تشخیص اشیا نیست، بیکه شامل ایجاد احساس و درک محیط و درک امن و یا نا امن بودن آن میباشد. همچنین توانایی فهم زبانی مانند انگلیسی، فرانسه و یا فارسی خیلی پیچیده تر از آن است که محققان فکر کردند. استفاده از زبانهای برنامه نویسی مثل C و C++ و Java نیز خیلی دست و پا گیر است. ما امروزه میدانیم که حتی افراد کودن هم به مراتب از ماشینهایی که امروزه طراحی شده اند پیشرفته تر و آگاه تر هستند. به هیچ رباتی نمیشود اطمینان داشت که برود و ظروف را از روی میز جمع کند، بشورد و در جاظرفی بچیند و همه این کارها را بدرستی انجام دهد. درحالی که همان افراد کودن هم این کارها را براحتی انجام میدهند. امروزه این به اثبات رسیده که ماشینها قادر به انجام کارهایی هستند که در ابتدا برای محققان انجام آن توسط ماشینها سخت مینمود مانند حساب کردن و شطرنج بازی کردن و....                                        

  ما  امروزه فهمیده ایم که خیلی از کارهای پیچیده انسان و حیوان مانند بالا رفتن از درخت و ساختن آشیانه، هوش بسیار بالا و دانش پیچیده ای نیاز دارد که تیوریهای ما هنوز آنها را پوشش نمی دهند. همچنین درک غرایز حیوانی نیز حتی در میان فلاسفه بسیار مشکل است. بسیاری از محققین سعی میکنند که موارد فوق را بدرستی درک کنند و برای آنها مکانیسمهایی طراحی کنند. طراحی شبکه های عصبی و مترجمهای چند زبانه راهایی هستند که محققین برای رسیدن به این اهداف بزرگ پی گرفته اند. همچنین محققین در تلاشند روشهایی برای ساختن سیستمهای با مکانیزمی که بتواند انگیزه و احساس را دریافت و درک کند، میباشند. بنابراین AI علاوه بر مطالعه بر روی درک و دریافت، تعلیم؛ یادگیری، احساسات، ارتباطات و غیره، زمینه های دیگر بخصوص فلسفه، منطق، روانشناسی و همچنین مهندسی نرم افزار و علم کامپیوتر را نیز مورد مطالعه قرار میدهد